

浏览全部资源
扫码关注微信
新疆医科大学 药学院,乌鲁木齐 830011
Received:31 August 2021,
Published Online:29 October 2021,
Published:05 January 2022
移动端阅览
康莹莹,包海燕,李敏等.基于网络药理学和实验验证探讨新疆紫草治疗黑色素瘤的分子机制[J].中国实验方剂学杂志,2022,28(01):204-211.
KANG Ying-ying,BAO Hai-yan,LI Min,et al.Mechanism of Arnebia euchroma Against Melanoma: An Exploration Based on Network Pharmacology and Experimental Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(01):204-211.
康莹莹,包海燕,李敏等.基于网络药理学和实验验证探讨新疆紫草治疗黑色素瘤的分子机制[J].中国实验方剂学杂志,2022,28(01):204-211. DOI: 10.13422/j.cnki.syfjx.20211514.
KANG Ying-ying,BAO Hai-yan,LI Min,et al.Mechanism of Arnebia euchroma Against Melanoma: An Exploration Based on Network Pharmacology and Experimental Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(01):204-211. DOI: 10.13422/j.cnki.syfjx.20211514.
目的
2
通过网络药理学及分子对接技术初步预测新疆紫草治疗黑色素瘤的活性成分、作用靶点及信号通路,通过体外实验验证可能的作用机制。
方法
2
通过中药系统药理学数据库(TCMSP),成分靶点预测数据库(SwissTargetPrediction)以及查阅文献获取新疆紫草药理作用的活性成分及相关靶点;通过GeneCards,在线人类孟德尔遗传病数据库(OMIM),毒性与基因比较数据库(CTD)获取黑色素瘤相关靶点;使用STRING数据库构建活性成分与相关靶点的新疆紫草-黑色素瘤靶点蛋白质-蛋白质相互作用(PPI)网络图;利用Cytoscape 3.8.2软件对新疆紫草抗黑色素瘤网络节点进行筛选分析;使用DAVID 6.8数据库对交集靶点进行基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)通路富集分析。选取新疆紫草中活性成分乙酰阿卡宁和靶点通过AutoDock vina 1.1.2软件进行分子对接验证;利用体外细胞实验验证药物抗黑色素瘤的作用。
结果
2
预测显示,新疆紫草与黑色素瘤共同靶点271个,其中关键靶点23个,包括基质金属蛋白酶(MMP)-9,Janus激酶(JAK)2等;KEGG富集分析预测新疆紫草治疗黑色素瘤主要作用于JAK信号转导与转录激活蛋白(STAT),酪氨酸激酶受体(ErbB),血管内皮生长因子(VEGF)等信号通路;分子对接显示新疆紫草中活性成分乙酰阿卡宁与JAK2,STAT3,VEGF,MMP-9,上皮钙黏蛋白(E-cadherin)受体表现出良好的对接活性;体外蛋白免疫印迹与实时荧光定量聚合酶链式反应(Real-time PCR)结果表明,不同剂量的乙酰阿卡宁能抑制A375细胞JAK2,STAT3,VEGF,MMP-9,E-cadherin蛋白与基因的表达(
P
<
0.05)。
结论
2
新疆紫草治疗黑色素瘤具有多靶点、多通路的特点,其发挥治疗作用机制可能与影响JAK2,STAT3,VEGF,MMP-9,E-cadherin等关键靶点蛋白的表达,进而抑制黑色素瘤细胞侵袭和转移能力有关。该研究为新疆紫草抗肿瘤提供了实验依据。
Objective
2
To preliminarily predict the active components, action targets, and signaling pathways of
Arnebia euchroma
in the treatment of melanoma based on network pharmacology and molecular docking, and to verify its possible mechanism of action in
in vitro
experiments.
Method
2
The active components and related targets of
A. euchroma
were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP)SwissTargetPrediction and literature, and the targets related to melanoma from the GeneCards, Online Mendelian Inheritance in Man (OMIM), and Comparative Toxicogenomics Database (CTD). Following the construction of the protein-protein interaction (PPI) network of active components and related targets of
A. euchroma
and melanoma-related targets using STRING, Cytoscape 3.8.2 was used for screening and analyzing the nodes in the network of
A. euchroma
against melanoma. The intersections were subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis using DAVID 6.8. Acetyl alkannin, the active component in
A. euchroma
, was docked to the target by AutoDock Vina 1.1.2. The
in vitro
experiments were then carried out to verify the anti-melanoma effect of
A. euchroma
.
Result
2
A total of 271 common targets of
A. euchroma
and melanoma were harvested, among which 23 were key targets, including matrix metalloproteinase-9 (MMP-9) and Janus kinase 2 (JAK2). As revealed by KEGG enrichment analysis,
A. euchroma
mainly acted on Janus kinase/signal transduction and activator of transcription (JAK/STAT), tyrosine kinase receptor (ErbB), and vascular endothelial growth factor (VEGF) signaling pathways to resist melanoma. According to molecular docking, acetyl alkannin exhibited a good docking activity with JAK2, STAT3, VEGF, MMP-9, and E-cadherin receptors. The results of Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR) showed that acetyl alkannin at different doses inhibited the protein and gene expression of JAK2, STAT3, VEGF, MMP-9, and E-cadherin in A375 cells (
P
<
0.05).
Conclusion
2
A. euchroma
alleviates melanoma via multiple targets and multiple pathways, and it may exert the therapeutic effects by affecting the expression of such key target proteins as JAK2, STAT3, VEGF, MMP-9, and E-cadherin and inhibiting the invasion and metastasis of melanoma cells. This study has provided an experimental basis for the treatment of tumor with
A. euchroma
.
GABRISOVA V , KUCEROVA L , KUCEROVA L . Malignant melanoma:diagnosis,treatment and cancer stem cells [J]. Neoplasma , 2016 , 63 ( 4 ): 510 - 517 .
金兰 , 康晓静 . 黑色素瘤靶向治疗的耐药机制及其治疗策略 [J]. 国际肿瘤学杂志 , 2018 , 45 ( 7 ): 444 - 448 .
TRIPP M K , WATSON M , BALK S J , et al . State of the science on prevention and screening to reduce melanoma incidence and mortality:the time is now [J]. CA Cancer J Clin , 2016 , 66 : 460 - 480 .
HONG A M , WALDSTEIN C , SHIVALINGAM B , et al . Management of melanoma brain metastases: evidence-based clinical practice guidelines by cancer council Australia [J]. Eur J Cancer , 2020 , 142 : 10 - 17 .
HARSHITA M , MISHRA P K , ADAM E , et al . Melanoma treatment:from conventional to nanotechnology [J]. J Cancer Res Clin , 2018 , 144 : 2283 - 2302 .
MARIANA A , MARCELA B M . Combining immunotherapy with oncogene-targeted therapy:a new road for melanoma treatment [J]. Front Immunol , 2015 , 6 : 46 .
林千里 , 张文俊 , 汪汇 , 等 . 皮肤黑色素瘤流行病学及防治研究进展 [J]. 中国医药导报 , 2019 , 16 ( 3 ): 28 - 32 .
SHA L Y , LYU Z Q , LIU Y J , et al . Shikonin inhibits the Warburg effect,cell proliferation,invasion and migration by downregulating PFKFB2 expression in lung cancer [J]. Mol Med Rep , 2021 , doi: 10.3892/mmr.2021.12199 http://dx.doi.org/10.3892/mmr.2021.12199 .
WANG J C , CHEN Z J , FENG X J , et al . Shikonin ameliorates injury and inflammatory response of LPS-stimulated WI-38 cells via modulating the miR-489-3p/MAP2K1 axis [J]. Environ Toxicol , 2021 , doi: 10.1002/tox.23298 http://dx.doi.org/10.1002/tox.23298 .
HUANG X Y , FU H L , TANG H Q , et al . Optimization extraction of shikonin using ultrasound-assisted response surface methodology and antibacterial studies [J]. Evid Based Complement Alternat Med , 2020 , 2020 : 1208617 .
ZHONG J J , WANG Z F , XIE Q , et al . Shikonin ameliorates D -galactose-induced oxidative stress and cognitive impairment in mice via the MAPK and nuclear factor- κ B signaling pathway [J]. Int Immunopharmacol , 2020 , 83 : 106491 .
MA C L , HU Y M , TOWNSEND J A , et al . Ebselen,disulfiram,carmofur,PX-12,tideglusib,and shikonin are non-specific promiscuous SARS-CoV-2 main protease inhibitors [J]. bioRxiv , 2020 , doi: 10.1101/2020.09.15.299164 http://dx.doi.org/10.1101/2020.09.15.299164 .
LIU Y K , KANG X , NIU G , et al . Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways [J]. Artif Cells Nanomed Biotechnol , 2019 , 47 : 626 - 635 .
KRESCHMER N , DEUTSCH A , DURCHSCHEIN C , et al . Comparative gene expression analysis in WM164 melanoma cells revealed that beta-beta-dimethylacryl shikonin leads to ROS generation,loss of mitochondrial membrane potential,and autophagy induction [J]. Molecules , 2018 , 23 ( 11 ): 2823 - 2839 .
CUI J Q , ZHOU X B , HUANG J , et al . Selective antitumor effect of shikonin derived DMAKO-20 on melanoma through CYP1B1 [J]. Curr Cancer Drug Targets , 2020 , doi: 10.2174/1568009620666201116112937 http://dx.doi.org/10.2174/1568009620666201116112937 .
HAN X , KANG K A , PIAO M J , et al . Shikonin exerts cytotoxic effects in human colon cancers by inducing apoptotic cell death via the endoplasmic reticulum and mitochondria-mediated pathways [J]. Biomol Ther (Seoul) , 2019 , 27 : 41 - 47 .
TANG J C , REN Y G , ZHAO J , et al . Shikonin enhances sensitization of gefitinib against wild-type EGFR non-small cell lung cancer via inhibition PKM2/STAT3/Cyclin D 1 signal pathway [J]. Life Sci , 2018 , 204 : 71 - 77 .
KIM H J , HWANG K E , PARK D S , et al . Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells [J]. J Transl Med , 2017 , 15 : 123 .
SHAHSAVARI Z , KARAMI-TEHRANI F , SALAMI S . Targeting cell necroptosis and apoptosis induced by shikonin via receptor interacting protein kinases in estrogen receptor positive breast cancer cell line,MCF-7 [J]. Anticancer Agents Med Chem , 2018 , 18 : 245 - 254 .
钱乾 , 许芳 , 李敏 , 等 . 乙酰紫草素对黑色素瘤A375细胞增殖和凋亡作用研究 [J]. 新疆医科大学学报 , 2021 , 44 ( 6 ): 726 - 730 .
ZHANG R , HAO J , GUO K W , et al . Germacrone inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cells [J]. Biomed Res Int , 2020 , 2020 : 7643248 .
BHATTACHARYA R J , YE X C , W R , et al . Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells [J]. Cancer Res , 2016 , 76 : 3014 - 3024 .
WAN X F , ZHU Y L , ZHANG L J , et al . Gefitinib inhibits malignant melanoma cells through the VEGF/Akt signaling pathway [J]. Mol Med Rep , 2018 , 17 : 7351 - 7355 .
LIU S L , SUI Y F , LIN M Z . MiR-375 is epigenetically downregulated due to promoter methylation and modulates multi-drug resistance in breast cancer cells via targeting YBX1 [J]. Eur Rev Med Pharmaco , 2016 , 20 ( 15 ): 3223 - 3229 .
DOI T , ISHIKAWA T , OKAYAMA T , et al . The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines [J]. Oncol Rep , 2017 , 37 ( 3 ): 1545 .
WANG X , CHEN L H , LIU J , et al . In vivo treatment of rat arterial adventitia with interleukin1 β inducesintimal proliferation via the JAK2/STAT3 signaling pathway [J]. Mol Med Rep , 2016 , 13 ( 4 ): 3451 - 3458 .
XU Y , JIN J , XU J , et al . JAK2 variations and functions in lung adenocarcinoma [J]. Tumor Biol , 2017 , 39 ( 6 ): 101042831771114 .
LIN H Y , CHIANG C H , HUNG W C . STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells [J]. Br J Cancer , 2013 , 109 ( 3 ): 731 - 738 .
KALLURI , RAGHU . Basement membranes:structure,assembly and role in tumour angiogenesis [J]. Nat Rev Cancer , 2003 , 3 ( 6 ): 422 - 433 .
彭挺生 , 丘钜世 , 吴惠茜 , 等 . CD44s、MMP-9、Ki-67的表达与骨肉瘤侵袭、转移、复发的关系 [J]. 癌症 , 2002 , 21 ( 7 ): 745 - 750 .
TSUJITA Y , HORIGUCHI A , TASAKI S , et al . STAT3 inhibition by WP1066 suppresses the growth and invasiveness of bladder cancer cells [J]. Oncol Rep , 2017 , 38 ( 4 ): 2197 - 2204 .
徐小艳 , 徐宪伟 , 王慧 , 等 . 肺腺癌中CD147、MMP-9和VEGF的表达及临床意义 [J]. 临床与实验病理学杂志 , 2017 , 33 ( 4 ): 384 - 387 .
STEVENS M , OLYEAM S . Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGF-A/VEGFR Axis [J]. Cells , 2019 , doi: 10.3390/cells8040288 http://dx.doi.org/10.3390/cells8040288 .
CHAI E Z P , SHANMUGAM M K , ARFUSO F , et al . Targeting transcription factor STAT3 for cancer prevention and therapy [J]. Pharmacol Therapeut , 2016 , 162 : 86 - 97 .
0
Views
22
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621