浏览全部资源
扫码关注微信
1.广州中医药大学 深圳医院(福田),广东 深圳 518034
2.肇庆市中医院,广东 肇庆 525000
3.广西中医药大学 附属瑞康医院,广西 南宁 530011
Published:20 December 2021,
Published Online:28 October 2021,
Received:11 May 2021,
扫 描 看 全 文
郭华慧,李美丹,黄仁发等.基于Klotho-FGF23轴探讨加味六味地黄汤对CKD-MBD模型大鼠骨保护作用的机制[J].中国实验方剂学杂志,2021,27(24):61-70.
GUO Hua-hui,LI Mei-dan,HUANG Ren-fa,et al.Mechanism of Modified Liuwei Dihuangtang in Bone Protection of CKD-MBD Model Rats: An Exploration Based on Klotho-FGF23 Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2021,27(24):61-70.
郭华慧,李美丹,黄仁发等.基于Klotho-FGF23轴探讨加味六味地黄汤对CKD-MBD模型大鼠骨保护作用的机制[J].中国实验方剂学杂志,2021,27(24):61-70. DOI: 10.13422/j.cnki.syfjx.20212496.
GUO Hua-hui,LI Mei-dan,HUANG Ren-fa,et al.Mechanism of Modified Liuwei Dihuangtang in Bone Protection of CKD-MBD Model Rats: An Exploration Based on Klotho-FGF23 Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2021,27(24):61-70. DOI: 10.13422/j.cnki.syfjx.20212496.
目的
2
观察加味六味地黄汤对高磷联合腺嘌呤大鼠血清成纤维细胞生长因子23(FGF23),全段甲状旁腺激素(iPTH)和1,25-二羟维生素D
3
[1,25(OH)
2
D
3
]水平及肾骨组织Klotho和FGF23蛋白表达的影响,探讨加味六味地黄汤调控Klotho-FGF23对治疗肾性骨病的作用机制。
方法
2
健康成年SD大鼠130只,随机分为正常组(
n
=10),高磷组(
n
=30),模型组(
n
=30),加味六味地黄汤组(
n
=30)和骨化三醇组(
n
=30)5组,各组组内分8,10,12周3个时间点。正常组大鼠普通饮食饲养,高磷组高磷饮食饲养,其他组大鼠腺嘌呤及高磷饮食饲养建立肾性骨病大鼠模型,正常组、高磷组、模型组大鼠均予以蒸馏水(10 mL·kg
-1
·d
-1
)灌胃;加味六味地黄汤组予加味六味地黄汤药液(2.556 g·kg
-1
·d
-1
)灌胃;骨化三醇组予骨化三醇(0.09 μg·kg
-1
·d
-1
)灌胃。
结果
2
与正常组和高磷组8,10,12周比较,模型组大鼠血尿素氮(BUN),血肌酐(SCr),血磷,iPTH,FGF23,肾间质纤维化评分,肾骨组织FGF23蛋白均显著增高,血清钙水平,1,25(OH)
2
D
3
和肾、骨组织Klotho蛋白表达均降低(
P
<
0.05,
P
<
0.01);与模型组8,10,12周比较,加味六味地黄汤组和骨化三醇组大鼠BUN,SCr,血磷,iPTH,FGF23,小管间质半定量评分,肾骨组织FGF23蛋白表达均显著降低,血清钙水平,1,25(OH)
2
D
3
和肾、骨组织Klotho蛋白增高(
P
<
0.05,
P
<
0.01);而加味六味地黄汤组和骨化三醇组两组间BUN,SCr,血磷,iPTH,FGF23,肾间质纤维化评分,肾、骨组织FGF23蛋白表达差异无统计学意义。
结论
2
Klotho-FGF23轴调控钙磷代谢可能参与了肾性骨病过程;加味六味地黄汤能有效改善肾功能、肾脏和骨组织病理,调节钙磷代谢紊乱,其骨保护作用机制与调控Klotho-FGF23轴有关。
Objective
2
To observe the effects of modified Liuwei Dihuangtang on serum fibroblast growth factor 23 (FGF23), full-length intact parathyroid hormone (iPTH), and 1,25-dihydroxyvitamin D
3
[1,25(OH)
2
D
3
] levels and Klotho and FGF23 protein expression in renal and bone tissues of rats exposed to high phosphorus combined with adenine, so as to explore the mechanism of modified Liuwei Dihuangtang against renal osteopathy.
Method
2
One hundred and thirty healthy adult SD rats were randomly divided into five groups, namely normal group(
n
=10),high phosphorus group(
n
=30),model group(
n
=30),modified Liuwei Dihuangtang group(
n
=30) , and calcitriol group(
n
=30),and rats in each group were further classified based on three time points, namely 8,10, and 12 weeks. Rats in the normal group were fed with normal diet, the ones in the high phosphorus group with high phosphorus diet, and those in the other groups with adenine and high phosphorus diet for inducing renal osteopathy. Rats in the normal group,high phosphorus group, and model group were intragastrically administered with distilled water (10 mL·kg
-1
·d
-1
),the ones in the modified Liuwei Dihuangtang group with modified Liuwei Dihuangtang (2.556 g·kg
-1
·d
-1
) , and those in the calcitriol group with calcitriol (0.09 μg·kg
-1
·d
-1
).
Result
2
Compared with the normal group and high phosphorus group at the weeks of 8,10 and 12,the model group displayed significantly elevated blood urea nitrogen(BUN),serum creatinine(SCr),serum phosphorus,iPTH,FGF23,renal interstitial fibrosis score, and FGF23 expression in renal and bone tissues, but lowered serum calcium and 1,25(OH)
2
D
3
and Klotho protein expression in renal and bone tissues(
P
<
0.05 ,
P
<
0.01). Compared with the model group at the weeks of 8,10 and 12, the modified Liuwei Dihuangtang and calcitriol both significantly decreased the serum BUN,SCr,serum phosphorus,iPTH, FGF23, tubulointerstitial semi-quantitative score, and FGF23 expression in renal and bone tissues, while increased the serum calcium,1,25(OH)
2
D
3
, and Klotho protein expression in renal and bone tissues (
P
<
0.05,
P
<
0.01). There was no significant difference in the above-mentioned indexes between the modified Liuwei Dihuangtang group and the calcitriol group at the same time point.
Conclusion
2
Klotho-FGF23 axis is probably involved in renal osteopathy. The modified Liuwei Dihuangtang effectively improves renal function,alleviates pathological changes in renal and bone tissues,and regulates calcium and phosphorus metabolism to protect the bone, which is related to its regulation of Klotho-FGF23 axis.
加味六味地黄汤肾性骨病成纤维细胞生长因子23Klotho蛋白
modified Liuwei Dihuangtangrenal osteopathyfibroblast growth factor 23 (FGF23)Klotho protein
BURTON J O,GOLDSMITH D J,RUDDOCK N,et al.Renal association commentary on the KDIGO (2017) clinical practice guideline update for the diagnosis,evaluation,prevention,and treatment of CKD-MBD[J].BMC Nephrol,2018,19(1):240.
RODELO-HAAD C,SANTAMARIA R,MUÑOZ-CASTAÑEDA J R,et al.FGF23,biomarker or target[J].Toxins(Basel),2019,11(3):175.
BACCHETTA J,BARDET C,PRIÉ D.Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting[J].Metabolism,2020,103(120):153865.
RODRÍGUEZ M.FGF23:Is it another biomarker for phosphate-calcium metabolism?[J].Adv Ther,2020,2020(37):73-79 .
LU X,HU M C.Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease[J].Kidney Dis(Basel),2017,3(1):15-23.
BIAN A,XING C,HU M C.Alpha Klotho and phosphate homeostasis[J].J Endocrinol Invest,2014,37(11):1121-1126.
SCHOLZE A,LIU Y,PEDERSEN L,et al.Soluble α-klotho and its relation to kidney function and fibroblast growth factor-23[J].J Clin Endocrinol Metab,2014,99(5):E855-861.
KOMABA H,LANSKE B.Role of Klotho in bone and implication for CKD[J].Curr Opin Nephrol Hypertens,2018,27(4):298-304.
田辉,肖燕芳.强骨益肾颗粒治疗肾性骨病的疗效观察[J].大家健康:学术版,2014,8(2):45.
黄仁发,梁群卿,邓鸣,等.加味六味地黄汤对UUO大鼠肾组织Wnt4/β-catenin信号通路介导调控FGF-23的影响[J].中国中西医结合肾病杂志,2019,20(4):285-289.
黄仁发,梁群卿,吴金玉,等.加味六味地黄汤对UUO大鼠肾组织TGF-β1及EMT的影响[J].中国中医基础医学杂志,2014,20(6):737-739.
黄仁发,梁群卿,黄国东,等.加味六味地黄汤对单侧输尿管梗阻大鼠肾组织Notch1/jagged-1信号通路的影响[J].中国中医基础医学杂志,2015,3(11):1401-1403.
黄仁发,林心如,梁群卿,等.加味六味地黄汤对单侧输尿管梗阻大鼠肾组织CTGF和MMP-2的影响[J].中国中西医结合肾病杂志,2015,7(3):196-199.
朱国双,王岚,邹新蓉,等.基于FGF23-Klotho轴探讨肾元颗粒对db/db糖尿病肾病小鼠骨骼的保护作用[J].世界科学技术—中医药现代化,2020,22(1):77-83.
KIM G H.Gaps between global guidelines and local practices in CKD-MBD[J].Electrolyte Blood Press,2014,12(2):35-40.
魏伟,吴希美,李远见.药理实验方法学[M].4版.北京:人民卫生出版社,2010:71.
陈珺,孟彦,钟雁,等.大鼠肾性骨病模型皮质骨骨量及结构的变化[J].肾脏病与透析肾移植杂志,2015,26(2):113-116.
SETHI S,D'AGATI V D,NAST C C,et al.A proposal for standardized grading of chronic changes in native kidney biopsy specimens[J].Kidney Int,2017,91(4):787‐789.
MOE S M,RADCLIFFE J S,WHITE K E,et al.The pathophysiology of early-stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat[J].Bone Miner Res,2011,26(11):2672-2681.
KULICKI P,ŻEBROWSKI P,SOKALSKI A,et al.Circulating bone turnover markers and their relationships in hemodialysis patients with vitamin D deficiency[J].Wiad Lek,2019,72(11):2202-2209.
XU Y,SUN Z.Molecular basis of Klotho:from gene to function in aging[J].Endocr Rev,2015,36(2):174-193.
KOMABA H.CKD-MBD (chronic kidney disease-mineral and bone disorder).Role of FGF23-Klotho axis in CKD-MBD[J].Clin Calcium,2010,20(7):1028-3106.
ISAKOVA T,NICKOLAS T L,DENBURG M,et al.Treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD)[J].Am J Kidney Dis,2017,70(6):737-751.
赵玉,王文赟,王静.Pin1通过抑制Wnt/β-catenin信号参与CKD-MBD的发病[J].中国免疫学杂志,2018,19(7):1118-1121.
KIECKER C,BATES T,BELL E.Molecular specification of germ layers in vertebrate embryos[J].Cell Mol Life Sci,2016,73(5):923-947.
MANSON S R,AUSTIN P F,GUO Q,et al.BMP-7 signaling and its critical roles in kidney development,the responses to renal injury,and chronic kidney disease[J].Vitam Horm,2015,8(99):91-144.
0
Views
9
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution