浏览全部资源
扫码关注微信
1.甘肃中医药大学 中医临床学院,兰州 730000
2.甘肃省中医院,兰州 730050
Published:20 March 2023,
Published Online:19 August 2022,
Received:19 March 2022,
扫 描 看 全 文
袁剑,孔令俊,赵军等.中医药调控氧化应激治疗骨质疏松症的研究进展[J].中国实验方剂学杂志,2023,29(06):268-274.
YUAN Jian,KONG Lingjun,ZHAO Jun,et al.Role of Oxidative Stress in Osteoporosis and Treatment by Traditional Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):268-274.
袁剑,孔令俊,赵军等.中医药调控氧化应激治疗骨质疏松症的研究进展[J].中国实验方剂学杂志,2023,29(06):268-274. DOI: 10.13422/j.cnki.syfjx.2022002026.
YUAN Jian,KONG Lingjun,ZHAO Jun,et al.Role of Oxidative Stress in Osteoporosis and Treatment by Traditional Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):268-274. DOI: 10.13422/j.cnki.syfjx.2022002026.
骨质疏松症(OP)是一种全身代谢性骨骼疾病,随着社会老龄化加重,已成为我国中老年人群首要健康问题。衰老、铁负载及雌激素缺乏等使机体氧化与抗氧化系统平衡被打破,活性氧物种增加介导氧化应激损害DNA、脂质和蛋白质等大分子物质,从而加速细胞凋亡,还可诱导OP、肥胖症及神经退行性病变等疾病的发生。近年来研究发现,氧化应激在OP发病机制中具有重要意义,氧化应激可调控骨髓间充质干细胞、成骨细胞和破骨细胞相关信号通路、细胞因子及蛋白质表达而减弱骨髓间充质干细胞成骨分化能力、抑制成骨细胞矿化和促进破骨细胞活化、增殖和成熟,导致骨吸收和形成之间动态失衡扰乱骨重建而促进了OP的进展。目前,临床多使用抗骨吸收、促进骨合成及激素类等西药治疗为主,因其治疗周期长、可并发严重胃肠道反应,低钙血症及骨坏死等风险,导致患者依从性差,以至于OP的治疗效果不如预期。中医药治疗OP因其具有多通路、多靶点协同作用,疗效显著,和常规西药相比其价格低廉、不良反应较少,广泛应用于临床。随着中医药现代化快速发展,发现其在抗氧化应激治疗OP方面显现出独特优势,可通过调节不同信号通路而发挥作用,为OP的治疗提供了新思路、开辟了新篇章。因此,笔者通过查阅近年来国内外相关文献资料,总结氧化应激在OP中的作用机制及相关中医药治疗进展作一综述,以期为进一步研究奠定基础。
Osteoporosis (OP) is a systemic metabolic bone disease. Amid population aging, OP has become a major health problem for the middle-aged and the elderly in China. Aging, iron load, and estrogen deficiency break the balance between oxidation and antioxidant systems, and the increase of reactive oxygen species mediates oxidative stress to damage DNA, lipids, proteins and other macromolecules, thus accelerating cell apoptosis and inducing OP, obesity, and neurodegenerative disorders. It has been found that oxidative stress is of great significance in the pathogenesis of OP. Oxidative stress regulates the signaling pathways, cytokines, and proteins related to the mesenchymal stem cells, osteoblasts, and osteoclasts, thereby weakening the osteogenic differentiation of mesenchymal stem cells, inhibiting osteoblast mineralization, and promoting the activation, proliferation, and maturation of osteoclasts. As a result, the dynamic imbalance between bone resorption and bone formation occurs, influencing bone remodeling and promoting the progression of OP. At the moment, anti-bone resorption drugs, bone formation-promoting drugs, and hormones are mainly used in clinical settings in western medicine. However, due to the long treatment cycle and the occurrence of serious gastrointestinal reactions, hypocalcemia, osteonecrosis, and others, patients show poor compliance and thus the effect is not as expected. Traditional Chinese medicine (TCM) demonstrates remarkable effect on OP attributing to the multi-pathway and multi-target characteristics. With low price and few adverse reactions, TCM is widely applied in clinical practice in comparison with western medicine. TCM has unique advantages in the treatment of OP by regulating oxidative stress. It exerts the therapeutic effect on OP by modulating different signaling pathways, providing new mindset for the treatment of this disease. Therefore, through literature research, this study summarized the research on mechanism of oxidative stress in OP and the treatment by TCM, which is expected to lay a foundation for further research.
骨质疏松氧化应激成骨细胞
osteoporosisoxidative stressosteoblast
LANGDAHL B L. Overview of treatment approaches to osteoporosis[J]. Br J Pharmacol,2021,178(9):1891-1906.
麦嘉乐,李建良,肖嘉聪,等. 基于网络药理学探析黄精抗骨质疏松的机制及验证[J].中国实验方剂学杂志,2022,28(12):210-217.
乔久涛,关德宏,王冬艳,等.左归丸对成骨细胞氧化应激损伤的保护作用[J].中国组织工程研究,2020,24(7):1052-1056.
柯呈辉,何立江,吴文华.双膦酸盐防治骨质疏松性骨折的研究进展[J].中国骨质疏松杂志,2019,25(6):870-874.
INOUE S, HATAKEYAMA J, AOKI H, et al. Utilization of mechanical stress to treat osteoporosis: The effects of electrical stimulation, radial extracorporeal shock wave, and ultrasound on experimental osteoporosis in ovariectomized rats[J]. Calcif Tissue Int, 2021,109(2):215-229.
BHAT A H, DAR K B, ANEES S, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight[J]. Biomed Pharmacother,2015,74:101-110.
BOTTJE W G. Oxidative metabolism and efficiency: The delicate balancing act of mitochondria[J]. Poult Sci,2019,98(10):4223-4230.
程韶,舒冰,赵永见, 等. 氧化应激对骨重建的影响[J].中国骨质疏松杂志,2019,25(10):1478-1482.
FUJII J, HOMMA T, KOBAYASHI S, et al. Erythrocytes as a preferential target of oxidative stress in blood[J]. Free Radic Res, 2021,55(5):562-580.
VANELLA L, SANFORD C J R, KIM D H, et al. Oxidative stress and heme oxygenase-1 regulated human mesenchymal stem cells differentiation[J]. Int J Hypertens, 2012,2012:890671.
FILAIRE E, TOUMI H. Reactive oxygen species and exercise on bone metabolism: Friend or enemy?[J]. Joint Bone Spine,2012,79(4):341-346.
DENG H, SUN C, SUN Y, et al. Lipid, protein, and microRNA composition within mesenchymal stem cell-derived exosomes[J]. Cell Reprogram, 2018,20(3):178-186.
HU L, YIN C, ZHAO F, et al. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment[J]. Int J Mol Sci, 2018,19(2):360.
CHEN M, HAN H, ZHOU S, et al. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model[J]. Stem Cell Res Ther, 2021,12(1):173.
LI K, SHEN Q, XIE Y, et al. Incorporation of cerium oxide into hydroxyapatite coating protects bone marrow stromal cells against H2O2-induced inhibition of osteogenic differentiation[J]. Biol Trace Elem Res,2018,182(1):91-104.
WANG A, YANG Q, LI Q, et al. Ginkgo Biloba L. extract reduces H2O2-induced bone marrow mesenchymal stem cells cytotoxicity by regulating mitogen-activated protein kinase (MAPK) signaling pathways and oxidative stress[J]. Med Sci Monit, 2018, doi:10.12659/MSM.910718http://dx.doi.org/10.12659/MSM.910718.
WANG T, YANG L, JIANG J, et al. Pulsed electromagnetic fields: Promising treatment for osteoporosis[J]. Osteoporos Int,2019,30(2):267-276.
ROMÁN F, URRA C, PORRAS O, et al. Real-time H2O2 measurements in bone marrow mesenchymal stem cells (MSCs) show increased antioxidant capacity in cells from osteoporotic women[J]. J Cell Biochem,2017,118(3):585-593.
LIAO L, SU X, YANG X, et al. TNF-α inhibits FoxO1 by upregulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis[J]. Stem Cells, 2016,34(4):1054-1067.
MA X, SU P, YIN C, et al. The roles of FoxO transcription factors in regulation of bone cells function[J]. Int J Mol Sci,2020,21(3):692.
CARLOMOSTI F, D'AGOSTINO M, BEJI S, et al. Oxidative stress-induced miR-200c disrupts the regulatory loop among SIRT1, FOXO1, and eNOS[J]. Antioxid Redox Signal,2017,27(6):328-344.
CHEN Y, ZHOU F, LIU H, et al. SIRT1, a promising regulator of bone homeostasis[J]. Life Sci,2021, doi:10.1016/j.lfs.2021.119041http://dx.doi.org/10.1016/j.lfs.2021.119041.
LIN C H, LI N T, CHENG H S, et al. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions[J]. J Cell Mol Med,2018,22(2):786-796.
GENG Q, GAO H, YANG R, et al. Pyrroloquinoline quinone prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence[J]. Int J Biol Sci,2019,15(1):58-68.
KIM HN, IYER S, RING R, et al.The role of foxos in bone health and disease[J]. Curr Top Dev Biol,2018, doi:10.1016/bs.ctdb.2017.10.004http://dx.doi.org/10.1016/bs.ctdb.2017.10.004.
XI J C, ZANG H Y, GUO L X, et al. The PI3K/Akt cell signaling pathway is involved in regulation of osteoporosis[J]. J Recept Signal Transduct Res, 2015,35(6):640-645.
DING G, ZHAO J, JIANG D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/Akt and CREB/ERK signaling in osteoblast cells[J]. Exp Ther Med,2016,11(6):2553-2560.
GUO T M, XING Y L, ZHU H Y, et al. Extracellular regulated kinase 5 mediates osteoporosis through modulating viability and apoptosis of osteoblasts in ovariectomized rats[J]. Biosci Rep,2019,39(9):BSR20190432.
XIA G, LI X, ZHU X, et al.Mangiferin protects osteoblast against oxidative damage by modulation of ERK5/Nrf2 signaling[J]. Biochem Biophys Res Commun, 2017,491(3):807-813.
ZHANG X, ZHAO G, ZHANG Y, et al. Activation of JNK signaling in osteoblasts is inversely correlated with collagen synthesis in age-related osteoporosis[J]. Biochem Biophys Res Commun,2018,504(4):771-776.
KUNNUMAKKARA AB, SHABNAM B, GIRISA S, et al. Inflammation, NF-κB, and chronic diseases: How are they linked?[J]. Crit Rev Immunol,2020,40(1):1-39.
庞同涛. 骨质疏松发病与Bcl-2、CXCL12基因表达的关系[D].济南:山东大学,2018.
CHE J, YANG J, ZHAO B, et al. The effect of abnormal iron metabolism on osteoporosis[J]. Biol Trace Elem Res,2020,195(2):353-365.
LIN T H, PAJARINEN J, LU L, et al. NF-κB as a therapeutic target in inflammatory-associated bone diseases[J]. Adv Protein Chem Struct Biol, 2017, doi:10.1016/bs.apcsb.2016.11.002http://dx.doi.org/10.1016/bs.apcsb.2016.11.002.
BAEK K H, OH K W, LEE W Y, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures[J]. Calcif Tissue Int, 2010,87(3):226-235.
LI Z, CHEN C, ZHU X, et al. Glycyrrhizin suppresses RANKL-induced osteoclastogenesis and oxidative stress through inhibiting NF-κB and MAPK and activating AMPK/Nrf2[J]. Calcif Tissue Int, 2018,103(3):324-337.
KANG I S, KIM C. NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1[J]. Sci Rep,2016, doi:10.1038/srep38014http://dx.doi.org/10.1038/srep38014.
AGIDIGBI T S, KIM C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases[J]. Int J Mol Sci,2019,20(14):3576.
THUMMURI D, NAIDU V G M, CHAUDHARI P. Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling[J]. J Mol Med (Berl),2017,95(10):1065-1076.
LEE S Y, LEE K S, YI S H, et al. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production[J]. PLoS One,2013,8(12):e80873.
QIN D, ZHANG H, ZHANG H, et al. Anti-osteoporosis effects of osteoking via reducing reactive oxygen species[J]. J Ethnopharmacol, 2019, doi:10.1016/j.jep.2019.112045http://dx.doi.org/10.1016/j.jep.2019.112045.
PENG H, YANG M, GUO Q, et al. Dendrobium officinale polysaccharides regulate age-related lineage commitment between osteogenic and adipogenic differentiation[J]. Cell Prolif,2019,52(4):e12624.
EKEUKU S O, PANG K L, CHIN K Y. The skeletal effects of tanshinones: A review[J]. Molecules,2021,26(8):2319.
LI X, LIN H, ZHANG X, et al. Notoginsenoside R1 attenuates oxidative stress-induced osteoblast dysfunction through JNK signalling pathway[J]. J Cell Mol Med, 2021,25(24):11278-11289.
LI X, CHEN Y, MAO Y, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway[J]. Front Bioeng Biotechnol,2020, doi:10.3389/fbioe.2020.00625http://dx.doi.org/10.3389/fbioe.2020.00625.
XIAO L, ZHONG M, HUANG Y, et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways[J]. Aging (Albany NY), 2020,12(21):21706-21729.
SONG D, CAO Z, LIU Z, et al. Cistanche deserticola polysaccharide attenuates osteoclastogenesis and bone resorption via inhibiting RANKL signaling and reactive oxygen species production[J]. J Cell Physiol,2018,233(12):9674-9684.
ZHOU F, SHEN Y, LIU B, et al. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro[J]. Biochem Biophys Res Commun,2017,484(4):820-826.
余翔,任辉,沈耿杨,等. 龟板调控BMSCs增殖、迁移和成骨分化及其抗骨质疏松症的研究进展[J].中国骨质疏松杂志,2020,26(12):1847-1851.
DONG X L, YU W X, LI C M, et al. Chuanxiong (Rhizome of Ligusticum chuanxiong) protects ovariectomized hyperlipidemic rats from bone loss[J]. Am J Chin Med,2020,48(2):463-485.
CHEN D, WANG Q, LI Y, et al. Notopterol attenuates estrogen deficiency-induced osteoporosis via repressing RANKL signaling and reactive oxygen species[J]. Front Pharmacol,2021, doi:10.3389/fphar.2021.664836http://dx.doi.org/10.3389/fphar.2021.664836.
JIN W, ZHU X, YAO F, et al. Cytoprotective effect of Fufang Lurong Jiangu capsule against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived osteoblasts through the Nrf2/HO-1 signaling pathway[J].Biomed Pharmacother, 2020, doi:10.1016/j.biopha.2019.109676http://dx.doi.org/10.1016/j.biopha.2019.109676.
吴雨蒙,王莹,吴琪,等. 二仙汤对过氧化氢诱导的成骨细胞蛋白组学及PI3K信号通路的影响[J].中国中药杂志,2021,46(15):3934-3942.
乔久涛,关德宏,王冬艳,等. 左归丸对成骨细胞氧化应激损伤的保护作用[J].中国组织工程研究,2020,24(7):1052-1056.
邹振,曾庆贺,夏臣杰,等. 肾髓同治方防治小鼠去卵巢绝经后骨质疏松症的机制[J].中华中医药杂志,2021,36(10):5849-5853.
沈琳玲,戎宽,叶子丰,等. 金刚丸对骨质疏松症模型大鼠P38MAPK 、JNK、IL-1含量的影响[J].中国实验方剂学杂志,2022,28(9):1-9.
戴梦竹,任路,何信用,等. 基于网络药理学的三仙汤治疗骨质疏松症作用机制研究[J].中国骨质疏松杂志,2021,27(6):831-837,842.
何丹,万丹,舒骏,等. 四物汤物质基础、药理作用及临床应用研究进展[J].中药药理与临床,2020,36(6):221-229.
0
Views
27
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution