浏览全部资源
扫码关注微信
1.辽宁中医药大学,沈阳 110847
2.辽宁中医药大学 附属医院,沈阳 110847
Published:20 February 2023,
Published Online:20 July 2022,
Received:19 February 2022,
扫 描 看 全 文
张梦婷,李昱颖,张兰.中医药调控线粒体质量控制治疗糖尿病肾病研究进展[J].中国实验方剂学杂志,2023,29(04):236-245.
ZHANG Mengting,LI Yuying,ZHANG Lan.Regulation of Mitochondrial Quality Control in Treatment of Diabetic Kidney Disease by Traditional Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(04):236-245.
张梦婷,李昱颖,张兰.中医药调控线粒体质量控制治疗糖尿病肾病研究进展[J].中国实验方剂学杂志,2023,29(04):236-245. DOI: 10.13422/j.cnki.syfjx.202201723.
ZHANG Mengting,LI Yuying,ZHANG Lan.Regulation of Mitochondrial Quality Control in Treatment of Diabetic Kidney Disease by Traditional Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(04):236-245. DOI: 10.13422/j.cnki.syfjx.202201723.
糖尿病肾病典型表现为早期肾脏高滤过和蛋白尿漏出,随后是进行性肾功能下降、球管系统上皮细胞肥大及间质纤维化,是慢性肾病的主因之一。目前,现代医学缺少较好的治疗手段,主要以控制原发疾病来降低肾脏损伤风险为主,而中医药通过辨证合参,利水消肿以治标、补虚培元以调本,能起到一定治疗和延缓肾病进展的作用,具有综合调理患者体质和不良反应小等优势。肾脏线粒体含量位居脏腑第二,参与水液代谢等生理过程,为人体元阴元阳之本。线粒体是细胞能量生产器,具有细胞呼吸、活性氧生成和氧化磷酸化产生三磷酸腺苷的功能。线粒体质量控制是维持线粒体动态平衡的有效方式,其失调与糖尿病肾病的发生发展密切相关,包括线粒体氧化应激、线粒体自噬、线粒体动力学改变及钙调节异常等,一般认为机体代谢异常下的线粒体结构破坏是其成因。近年来,中医药因在糖尿病肾病治疗中标本兼治、多靶点协同作用的独特优势使其疗效机制研究受到国内外学者关注,但具体作用机制并不明朗。多项研究显示线粒体可能是中医药治疗糖尿病肾病的作用靶点之一,目前有关中医药通过干预线粒体质量控制治疗糖尿病肾病综述尚且缺乏,因此拟对近10年中医药通过调节线粒体质量控制治疗糖尿病肾病进行总结梳理,以期为中医药治疗糖尿病肾病提供新的方向。
Diabetic kidney disease (DKD) is characterized by the hyperfiltration and albuminuria in the early phase which are followed by progressive renal function decline, renal tubular epithelial cell hypertrophy, and tubulointerstitial fibrosis. Thus, it is one of the leading causes of chronic kidney diseases. The currently available therapies mainly aim to control the primary diseases and reduce the risk of kidney injury. Based on syndrome differentiation, traditional Chinese medicine (TCM) relieves the symptoms by excreting water and alleviating edema and eliminates the root cause by tonifying deficiency and supplementing the original Qi, thereby showing therapeutic effect and delaying the progression of DKD. It excels in comprehensively regulating the constitution of patients with little side effects. Among the Zang-fu organs, kidney takes the second place in the content of mitochondria which participate in the metabolism of water and fluid and are the foundation of kidney Yin and kidney Yang. Mitochondria are energy producers within a cell, which carry out cellular respiration, produce reactive oxygen species, and generate adenosine triphosphate by oxidative phosphorylation. Mitochondrial quality control (MQC) is an effective way to maintain mitochondrial dynamic balance, whose imbalances, such as mitochondrial oxidative stress, mitophagy, mitochondrial dynamic changes, and abnormal calcium regulation, are related to the occurrence and development of DKD. It is generally believed that the destruction of mitochondrial structure in the case of metabolic disorder is the main cause of the disease. In recent years, TCM has attracted the attention of both Chinese and foreign researchers for the unique advantages of treating both symptoms and root cause at the same time and multi-target synergy in the treatment of DKD. However, the specific mechanism is still unclear. It has been frequently verified that mitochondria may be one of the targets of TCM in the treatment of DKD. At the moment, no review on the treatment of DKD by TCM through the intervention of MQC is available. Therefore, this paper aims to summarize the research on TCM treatment of DKD by regulating MQC in the past 10 years, which is expected to provide a new direction for the treatment of DKD by TCM.
糖尿病肾病线粒体中医药综述
diabetic kidney disease (DKD)mitochondriontraditional Chinese medicinereview
中华医学会糖尿病学分会微血管并发症学组. 中国糖尿病肾脏病防治指南(2021年版)[J]. 中华糖尿病杂志,2021,13(8): 762-784.
SUN H J, WU Z Y, CAO L, et al. Hydrogen sulfide: Recent progression and perspectives for the treatment of diabetic nephropathy[J]. Molecules, 2019,24(15):2857.
SAGOO M K, GNUDI L. Diabetic nephropathy: An overview[J]. Methods Mol Biol, 2020,2067:3-7.
PARVING H H, LEHNERT H, BRØCHNER-MORTENSEN J, et al. Effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes[J]. Ugeskr Laeger, 2001, 163(40): 5519-24.
闫淼, 陈锐. 糖尿病肾病中医病因病机的研究概述[J]. 吉林中医药, 2021,41(6):837-840.
李艳春, 李嘉鑫, 杨宇峰, 等. 基于“五行相生相克”理论论治糖尿病肾病[J]. 中国实验方剂学杂志, 2021,27(11):240-245.
MILLS D B, BOYLE R A, DAINES S J, et al. Eukaryogenesis and oxygen in earth history[J]. Nat Ecol Evol, 2022,6(5):520-532.
JIANG H, SHAO X, JIA S, et al. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease[J]. Cell Physiol Biochem, 2019,52(2):156-171.
DAI W, LU H, CHEN Y, et al. The loss of mitochondrial quality control in diabetic kidney disease[J]. Front Cell Dev Biol, 2021,9:706832.
AHMAD A A, DRAVES S O, ROSCA M. Mitochondria in diabetic kidney disease[J]. Cells Basel, 2021,10(11):2945.
ZHANG P N, ZHOU M Q, GUO J, et al. Mitochondrial dysfunction and diabetic nephropathy: Nontraditional therapeutic opportunities[J]. J Diabetes Res, 2021, doi: 10.1155/2021/1010268http://dx.doi.org/10.1155/2021/1010268.
ZHONG Y, LIU J, SUN D, et al. Dioscin relieves diabetic nephropathy via suppressing oxidative stress and apoptosis, and improving mitochondrial quality and quantity control[J]. Food Funct, 2022,13(6):3660-3673.
陈盛业, 杨凯, 董佳妮, 等. 益气养阴中药对糖尿病肾病患者炎症因子及血管内皮因子的影响[J]. 中医药信息, 2016,33(1):46-49.
姚玉红, 吴霞, 郭莉阁. 益肾康颗粒对糖尿病肾病大鼠肝肾损伤的影响[J]. 中国实验方剂学杂志, 2014,20(23):129-132.
董津含, 刘阳, 杨彬婕, 等. 益肾康颗粒对糖尿病大鼠尿转铁蛋白、尿微量白蛋白及肾比重的影响[J]. 辽宁中医药大学学报, 2013,15(1):45-47.
袁常健. “补肾活血”法治疗糖尿病肾病的临床与实验研究[D].广州: 广州中医药大学, 2020.
LIU X, LU J, LIU S, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in db/db mice by inhibiting PINK1/Parkin-mediated mitophagy[J]. Am J Transl Res, 2020,12(3):989-998.
GOTTLIEB R A, PIPLANI H, SIN J, et al. At the heart of mitochondrial quality control: Many roads to the top[J]. Cell Mol Life Sci, 2021,78(8):3791-3801.
RASHEDINIA M, KHOSHNOUD M J, FAHLYAN B K, et al. Syringic acid: A potential natural compound for the management of renal oxidative stress and mitochondrial biogenesis in diabetic rats[J]. Curr Drug Discov Technol, 2021,18(3):405-413.
DAEHN I, BREM R, BARKAUSKAITE E, et al. 6-Thioguanine damages mitochondrial DNA and causes mitochondrial dysfunction in human cells[J]. FEBS Lett, 2011,585(24):3941-3946.
QIN X, JIANG M, ZHAO Y, et al. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis[J]. Br J Pharmacol, 2020,177(16):3646-3661.
FONTECHA-BARRIUSO M, MARTIN-SANCHEZ D, MARTINEZ-MORENO J M, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases[J]. Biomolecules,2020,10(2):347.
徐雪垠. 黄芪多糖通过AMPK/SIRT1/PGC-1α途径对糖尿病肾病肾小管上皮细胞线粒体的影响[J]. 山东医药, 2020,60(5):33-37.
田东. 葛根提取物对镉致糖尿病肾病小鼠保护作用的研究[D].西安: 陕西科技大学, 2019.
ZHANG T, CHI Y, KANG Y, et al. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1α mediated attenuation of mitochondrial oxidative stress[J]. J Cell Physiol, 2019,234(4):5033-5043.
XUE H, LI P, LUO Y, et al. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice[J]. Phytomedicine, 2019,54:240-247.
BAO L, CAI X, DAI X, et al. Grape seed proanthocyanidin extracts ameliorate podocyte injury by activating peroxisome proliferator-activated receptor-γ coactivator 1α in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats[J]. Food Funct, 2014,5(8):1872-1880.
GUO Y, RAN Z, ZHANG Y, et al. Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells[J]. Biomed Pharmacother, 2020,131:110684.
WONGMEKIAT O, LAILERD N, KOBROOB A, et al. Protective effects of purple rice husk against diabetic nephropathy by modulating PGC-1α/SIRT3/SOD2 signaling and maintaining mitochondrial redox equilibrium in rats[J]. Biomolecules, 2021,11(8):1224.
LIU P, PENG L, ZHANG H, et al. Tangshen formula attenuates diabetic nephropathy by promoting ABCA1-mediated renal cholesterol efflux in db/db mice[J]. Front Physiol, 2018,9:343.
李小会, 贾国华, 王琦, 等. 通络益肾方对糖尿病肾病大鼠线粒体功能障碍的保护作用[J]. 中成药, 2021,43(2):475-480.
贾国华. 通络益肾方对糖尿病肾病大鼠线粒体功能障碍的干预研究[D].西安:陕西中医药大学, 2018.
靳贺超, 强家维, 张冠文, 等. 当归补血汤通过改善足细胞线粒体功能障碍减轻糖尿病肾病大鼠氧化应激及炎症反应[J]. 中国实验方剂学杂志, 2022,28(3):31-40.
韩鹏勋. 2型糖尿病肾病中医体质证型及代谢特点和蒿甲醚干预的实验研究[D].广州:广州中医药大学, 2019.
LUC K, SCHRAMM-LUC A, GUZIK T J, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019,70(6):809-824.
祁宏, 李智超, 史志强. 线粒体膜完整性对细胞命运的调控[J]. 生物化学与生物物理进展, 2022, 49(9): 1638-1647.
ALTAMIMI J Z, ALFARIS N A, AL-FARGA A M, et al. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p(66)Shc axis and activation of FOXO-3a[J]. J Nutr Biochem, 2021,87:108515.
陆苗苗, 张慧光, 董墨妍, 等. 姜黄素对糖尿病肾病NLRP3炎性体活化的影响及机制研究[J]. 解剖科学进展, 2018,24(4):393-396.
SINGH J, CHAUDHARI B P, KAKKAR P. Baicalin and chrysin mixture imparts cyto-protection against methylglyoxal induced cytotoxicity and diabetic tubular injury by modulating RAGE, oxidative stress and inflammation[J]. Environ Toxicol Pharmacol, 2017,50:67-75.
WOO C Y, BAEK J Y, KIM A R, et al. Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy[J]. Diabetes Metab J, 2020,44(4):581-591.
王苑蓉, 叶大杰. 马齿笕多糖对高脂饲料联合链脲佐菌素诱导的糖尿病肾病大鼠的作用及机制[J]. 广西医科大学学报, 2018,35(8):1050-1053.
XIE R, ZHANG H, WANG X Z, et al. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats[J]. Food Funct, 2017,8(1):299-306.
LI J, LI N, YAN S, et al. Liraglutide protects renal mesangial cells against hyperglycemia‑mediated mitochondrial apoptosis by activating the ERK‑Yap signaling pathway and upregulating Sirt3 expression[J]. Mol Med Rep, 2019,19(4):2849-2860.
ZHANG B, ZHANG X, ZHANG C, et al. Notoginsenoside R1 protects db/db mice against diabetic nephropathy via upregulation of Nrf2-mediated HO-1 expression[J]. Molecules, 2019,24(2):247.
邓文娟. 黄芪汤通过AMPK/Nrf2信号通路抑制氧化应激改善C57小鼠糖尿病肾病足细胞损伤[D].合肥: 安徽医科大学, 2019.
ZHOU J, WANG T, WANG H, et al. Obacunone attenuates high glucose-induced oxidative damage in NRK-52E cells by inhibiting the activity of GSK-3β[J]. Biochem Biophys Res Commun, 2019,513(1):226-233.
QIAO C, YE W, LI S, et al. Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors[J]. Mol Cell Endocrinol, 2018,473:146-155.
WANG T, WEN X, ZHANG Z, et al. Phillyrin ameliorates diabetic nephropathy through the PI3K/Akt/GSK-3β signalling pathway in streptozotocin-induced diabetic mice[J]. Hum Exp Toxicol. 2021 Dec;40(12_suppl):S487-S496.
TONG Y, CHUAN J, BAI L, et al. The protective effect of shikonin on renal tubular epithelial cell injury induced by high glucose[J]. Biomed Pharmacother, 2018,98:701-708.
WEI J, WU H, ZHANG H, et al. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice[J]. Int J Mol Med, 2018,41(3):1608-1618.
林小丁, 谢曦. 虾青素通过线粒体抑制高糖诱导的HBZY-1细胞凋亡[J]. 海南大学学报:自然科学版, 2019,37(1):14-22.
邓丹芳, 孙龙, 林腊梅, 等. 肾元颗粒通过线粒体介导平滑肌细胞凋亡对糖尿病肾病模型小鼠血管钙化的改善作用[J]. 中华中医药杂志, 2021,36(5):2641-2646.
NI Z, TAO L, XIAOHUI X, et al. Polydatin impairs mitochondria fitness and ameliorates podocyte injury by suppressing Drp1 expression[J]. J Cell Physiol, 2017,232(10):2776-2787.
HUANG S, TAN M, GUO F, et al. Nepeta angustifolia C. Y. Wu improves renal injury in HFD/STZ-induced diabetic nephropathy and inhibits oxidative stress-induced apoptosis of mesangial cells[J]. J Ethnopharmacol, 2020,255:112771.
HE J Y, HONG Q, CHEN B X, et al. Ginsenoside Rb1 alleviates diabetic kidney podocyte injury by inhibiting aldose reductase activity[J]. Acta Pharmacol Sin, 2022,43(2):342-353.
XU G K, SUN C Y, QIN X Y, et al. Effects of ethanol extract of Bombax ceiba leaves and its main constituent mangiferin on diabetic nephropathy in mice[J]. Chin J Nat Med, 2017,15(8):597-605.
XU J, KITADA M, OGURA Y, et al. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells[J]. Cells Basel, 2021,10(6):1457.
JIANG X S, CHEN X M, HUA W, et al. PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes[J]. Biochem Biophys Res Commun, 2020,525(4):954-961.
韩晓瑜, 李嘉斌, 丁杰英, 等. 姜黄素对糖尿病肾病小鼠肾脏自噬及氧化应激的影响[J]. 中成药, 2021,43(6):1598-1602.
LIU H, WANG Q, SHI G, et al. Emodin ameliorates renal damage and podocyte injury in a rat model of diabetic nephropathy via regulating AMPK/mTOR-mediated autophagy signaling pathway[J]. Diabetes Metab Syndr Obes, 2021,14:1253-1266.
鲁玉梅. 甘松饮干预高糖诱导的小鼠肾足细胞和肾小管上皮细胞自噬-凋亡的分子机制研究[D].银川: 宁夏医科大学, 2021.
WANG X, ZHAO L, AJAY A K, et al. Qiditangshen granules activate renal nutrient-sensing associated autophagy in db/db mice[J]. Front Physiol, 2019,10:1224.
孙敏, 顾俊菲, 封亮. 益气解毒方对糖尿病肾病大鼠肾小管上皮细胞线粒体自噬作用机制[J]. 中国实验方剂学杂志, 2017,23(2):109-114.
ZHONG Y, LUO R, LIU Q, et al. Jujuboside A ameliorates high fat diet and streptozotocin induced diabetic nephropathy via suppressing oxidative stress, apoptosis, and enhancing autophagy[J]. Food Chem Toxicol, 2022,159:112697.
SU J, GAO C, XIE L, et al. Astragaloside Ⅱ ameliorated podocyte injury and mitochondrial dysfunction in streptozotocin-induced diabetic rats[J]. Front Pharmacol, 2021,12:638422.
KIM H, DUSABIMANA T, KIM S R, et al. Supplementation of abelmoschus manihot ameliorates diabetic nephropathy and hepatic steatosis by activating autophagy in mice[J]. Nutrients, 2018,10(11):1703.
KIM K, LEE E Y. Excessively enlarged mitochondria in the kidneys of diabetic nephropathy[J]. Antioxidants (Basel), 2021,10(5):741.
AUDZEYENKA I, BIERŻYŃSKA A, LAY A C. Podocyte bioenergetics in the development of diabetic nephropathy: The role of mitochondria[J]. Endocrinology, 2022, doi: 10.1210/endocr/bqab234http://dx.doi.org/10.1210/endocr/bqab234.
傅亮. 从线粒体—内质网偶联角度探讨肾气丸对糖尿病肾病的干预作用[D].北京:北京中医药大学, 2020.
NI Z, TAO L, XIAOHUI X, et al. Polydatin impairs mitochondria fitness and ameliorates podocyte injury by suppressing Drp1 expression[J]. J Cell Physiol, 2017,232(10):2776-2787.
李春花, 周磊. 白藜芦醇对糖尿病肾病大鼠肾功能的保护作用及机制[J]. 中国老年学杂志, 2014,34(21):6114-6115.
蒙向欣, 李辉远, 李娟, 等. 基于SIRT1/p53/Drp1轴探讨加味芪黄饮减轻糖尿病肾病线粒体损伤及胰岛素抵抗的机制[J]. 中华中医药学刊, 2022:1-13.
QIN X, ZHAO Y, GONG J, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction[J]. Theranostics, 2019,9(6):1698-1713.
GARBINCIUS J F, ELROD J W. Mitochondrial calcium exchange in physiology and disease[J]. Physiol Rev, 2022,102(2):893-992.
NING B, GUO C, KONG A, et al. Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease[J]. Cells-Basel, 2021,10(11):3204.
SAXENA S, MATHUR A, KAKKAR P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy[J]. J Cell Physiol, 2019,234(11):19223-19236.
刘莹. 2型糖尿病大鼠肾脏的钙稳态失衡、线粒体损伤及灵芝孢子粉的干预[D].佳木斯: 佳木斯大学, 2008.
梁金环, 杨晓晖, 赵利娜, 等. 养阴活血方药对糖尿病大鼠肾脏线粒体氧化应激损伤的影响[J]. 中国医药导报, 2015,12(17):24-27.
ZHANG R, WANG X, GAO Q, et al. Taurine supplementation reverses diabetes-induced podocytes injury via modulation of the CSE/TRPC6 axis and improvement of mitochondrial function[J]. Nephron, 2020,144(2):84-95.
吴进. 固肾泄浊和络方通过干预calpain 10的蛋白表达改善高糖诱导下线粒体功能障碍介导的足细胞损伤[D].南京: 南京中医药大学, 2021.
GUO H, CAO A, CHU S, et al. Astragaloside IV attenuates podocyte apoptosis mediated by endoplasmic reticulum stress through upregulating sarco/endoplasmic reticulum Ca2+-ATPase 2 expression in diabetic nephropathy[J]. Front Pharmacol, 2016,7:500.
ZHONG Y, JIN C, HAN J, et al. Diosgenin protects against kidney injury and mitochondrial apoptosis induced by 3-MCPD through the regulation of ER stress, Ca2+ homeostasis, and Bcl2 expression[J]. Mol Nutr Food Res, 2021,65(15):e2001202.
LI T X, MAO J H, HUANG L, et al. Beneficial effects of Huaiqihuang on hyperglycemia-induced MPC5 podocyte dysfunction through the suppression of mitochondrial dysfunction and endoplasmic reticulum stress[J]. Mol Med Rep, 2017,16(2):1465-1471.
0
Views
15
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution