浏览全部资源
扫码关注微信
1.兰州大学 第二临床医学院,兰州 730030
2.兰州大学 第二医院,兰州 730030
Published:20 March 2023,
Published Online:20 July 2022,
Received:02 April 2022,
扫 描 看 全 文
滕飞,孙重霄,陈毅等.姜黄素治疗骨肉瘤的研究进展[J].中国实验方剂学杂志,2023,29(06):275-282.
TENG Fei,SUN Chongxiao,CHEN Yi,et al.Curcumin in Treatment of Osteosarcoma: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):275-282.
滕飞,孙重霄,陈毅等.姜黄素治疗骨肉瘤的研究进展[J].中国实验方剂学杂志,2023,29(06):275-282. DOI: 10.13422/j.cnki.syfjx.202201726.
TENG Fei,SUN Chongxiao,CHEN Yi,et al.Curcumin in Treatment of Osteosarcoma: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):275-282. DOI: 10.13422/j.cnki.syfjx.202201726.
骨肉瘤(OS)是一种最常见的原发性恶性骨肿瘤,起源于间叶组织,具有恶性程度高、侵袭性强、易早期转移、复发率高等特点,临床表现为疼痛、局部肿块、活动受限及病理性骨折,主要发病人群是儿童、青少年和老年人,严重危害患者的身心健康和生活质量。OS目前的治疗方法以手术和放化疗及二者联合应用为主,虽然治疗效果较之前已有提升,但仍然会出现肿瘤复发、转移和多药耐药等情况,治疗效果尤其是对于转移性OS患者总体生存率的提高仍未令人满意,寻找到行之有效的治疗方法是临床医生和科研工作者研究的热点。近年来,姜黄素治疗OS的作用机制受到了越来越多的关注。姜黄素是一种天然色素,主要从多种植物如姜黄、郁金、莪术等的根茎或块根中提取得到,具有多种药理作用。学者们深入研究后发现,姜黄素对肿瘤细胞具有抑制增殖、诱导凋亡、逆转多药耐药等作用,但也发现其具有水溶性差、生物利用度低等特点,限制了其在临床中的应用。该文主要对姜黄素在OS治疗中的作用机制、存在的问题、新的治疗方法及未来的研究方向进行论述,以期为广大的科研工作者提供新的研究思路,也为其在今后的开发利用提供一定的参考。
Osteosarcoma (OS) is the most common primary malignant bone tumor originating from mesenchymal stem cells, which features high degree of malignancy, strong invasiveness, easy early metastasis, and high recurrence rate. The clinical manifestations of OS are pain, local mass, limited movement, and pathological fracture. OS mainly occurs in children, adolescents, and the elderly, seriously threatening physical and mental health of patients, as well as their quality of life. The currently available therapies for OS are surgery, chemoradiotherapy, and the combination of the two. Although the therapeutic effect has been improved, tumor recurrence and metastasis and multidrug resistance still occur. Thus, the therapeutic effect is not satisfactory, especially in improving the overall survival rate of patients with metastatic OS. As a result, clinicians and researchers have been making efforts to find an effective therapy. In recent years, the mechanism of curcumin (CUR) against OS has attracted wide attention. CUR, a pigment extracted from the rhizomes or tubers of many plants, such as
Curcuma longa
,
C. rcenyujin
, and
C. phaeocaulis
, has a variety of pharmacological effects. Scholars have found that CUR has the effects of inhibiting proliferation, inducing apoptosis, and reversing multidrug resistance (MDR) of tumor cells, but also it has poor water solubility and low bioavailability, which limit the clinical application. This paper mainly discusses the mechanism of CUR against OS, the existing problems, new treatment methods, and future research directions, which is expected to provide new ideas for scientific researchers and provide a reference for the development and utilization of CUR in the future.
姜黄素骨肉瘤治疗研究进展综述
curcuminosteosarcomatreatmentresearch progressreview
BROWN H K, SCHIAVONE K, GOUIN F, et al. Biology of bone sarcomas and new therapeutic developments [J]. Calcif Tissue Int, 2018, 102(2): 174-195.
HARRISON D J, GELLER D S, GILL J D, et al. Current and future therapeutic approaches for osteosarcoma [J]. Expert Rev Anticancer Ther, 2018, 18(1): 39-50.
ROESSNER A, LOHMANN C, JECHOREK D. Translational cell biology of highly malignant osteosarcoma [J]. Pathol Int, 2021, 71(5): 291-303.
MIRABELLO L, TROISI R J, SAVAGE S A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program [J]. Cancer, 2009, 115(7): 1531-1543.
CERSOSIMO F, LONARDI S, BERNARDINI G, et al. Tumor-associated macrophages in osteosarcoma: From mechanisms to therapy [J]. Int J Mol Sci, 2020, 21(15): 5207.
RICKEL K, FANG F, TAO J. Molecular genetics of osteosarcoma [J]. Bone, 2017, 102: 69-79.
JAFARI F, JAVDANSIRAT S, SANAIE S, et al. Osteosarcoma: A comprehensive review of management and treatment strategies [J]. Ann Diagn Pathol, 2020, doi: 10.1016/j.anndiagpath. 2020.151654http://dx.doi.org/10.1016/j.anndiagpath.2020.151654.
SIEGEL R L,MILLER K D,FUCHS H E,et al.Cancer statistics, 2021[J].CA Cancer J Clin,2021,71(1):7-33.
SADYKOVA L R, NTEKIM A I, MUYANGWA-SEMENOVA M, et al. Epidemiology and risk factors of osteosarcoma [J]. Cancer Invest, 2020, 38(5): 259-269.
HILLER C,WEGLER J L,FOREST C P. Osteosarcoma: Accurately diagnosing this bone-chilling disease[J].JAAPA,2016,29(12):29-35.
PAN Y, CHEN D Q, HU T B, et al. Characteristics and prognostic factors of patients with osteosarcoma older than 60 years from the SEER database [J]. Cancer Control, 2019, 26(1): 1073274819888893.
程新燕, 符翠莉. 芹菜素对大鼠骨肉瘤细胞凋亡及相关蛋白Bax,Bcl-2,Caspase-3,Caspase-9,细胞色素C的影响 [J]. 中国实验方剂学杂志, 2016, 22(15): 139-142.
曹莉莉, 朱岩, 樊根涛, 等. 骨肉瘤的治疗进展 [J]. 中国骨与关节杂志, 2020, 9(10): 771-778.
ANDERSON M E. Update on survival in osteosarcoma [J]. Orthop Clin North Am, 2016, 47(1): 283-292.
MILLER B J, GAO Y, DUCHMAN K R. Socioeconomic measures influence survival in osteosarcoma: An analysis of the National Cancer Data Base [J]. Cancer Epidemiol, 2017, doi: 10.1016/j.canep.2017.05.017http://dx.doi.org/10.1016/j.canep.2017.05.017.
ZHAO X,WU Q,GONG X,et al.Osteosarcoma: A review of current and future therapeutic approaches[J].Biomed Eng Online,2021,20(1):24.
李伟锋, 蒋建兰. 姜黄素药理作用的研究现状 [J]. 中国临床药理学杂志, 2017, 33(10): 957-960.
XU X, ZHANG X, ZHANG Y, et al. Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway [J]. Biomed Pharmacother, 2021, 138: 111439.
LIANG D,WEN Z,HAN W,et al.Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis[J].Mol Cell Biochem,2021,476(7):2823-2835.
苟梦星, 卢安琪, 翟江洋. 姜黄素的功能特性及其在食品领域的应用现状 [J]. 食品科技, 2021, 46(11): 264-268.
朱艳娟, 程静丽, 高忠爱, 等. 姜黄素促进骨骼肌GLUT4转位改善糖尿病大鼠胰岛素抵抗 [J]. 中华内分泌代谢杂志, 2021, 37(2): 143-148.
高丽芳, 郜文. 番茄红素与姜黄素联用对急性乙醇氧化损伤小鼠的抗氧化作用 [J]. 首都医科大学学报, 2021, 42(1): 89-93.
QADIR M I, NAQVI S T, MUHAMMAD S A. Curcumin: A polyphenol with molecular targets for cancer control [J]. Asian Pac J Cancer Prev, 2016, 17(6): 2735-2739.
顾长海, 李忠, 陈冬玲. 姜黄素对H2O2致H9c2心肌细胞损伤的抗凋亡作用及对NF-κB信号通路的调节作用研究 [J]. 中国药房, 2020, 31(23): 2863-2869.
SAK K. Radiosensitizing potential of curcumin in different cancer models [J]. Nutr Cancer, 2020, 72(8): 1276-1289.
LIU Y, WANG X, ZENG S, et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma [J]. J Exp Clin Cancer Res, 2018, 37(1): 303.
NELSON K M, DAHLIN J L, BISSON J, et al. The essential medicinal chemistry of curcumin [J]. J Med Chem, 2017, 60(5): 1620-1637.
KUNNUMAKKARA A B, BORDOLOI D, PADMAVATHI G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases [J]. Br J Pharmacol, 2017, 174(11): 1325-1348.
PANDA A K, CHAKRABORTY D, SARKAR I, et al. New insights into therapeutic activity and anticancer properties of curcumin [J]. J Exp Pharmacol, 2017, 9: 31-45.
HUANG T, SONG X, YANG Y, et al. Autophagy and hallmarks of cancer [J]. Crit Rev Oncog, 2018, 23(5/6): 247-267.
SASAHIRA T, KIRITA T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma [J]. Int J Mol Sci, 2018, 19(8): 2413.
MULTHOFF G, VAUPEL P. Hypoxia compromises anti-cancer immune responses [J]. Adv Exp Med Biol, 2020, 1232: 131-143.
KOUVARAS E, CHRISTONI Z, SIASIOS I, et al. Hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in cartilage tumors [J]. Biotech Histochem, 2019, 94(4): 283-289.
WANG Z, ZHANG K, ZHU Y, et al. Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1 [J]. Mol Med Rep, 2017, 15(4): 1747-1752.
PANOUTSOPOULOU K, AVGERIS M, MAGKOU P, et al. miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients [J]. Int J Cancer, 2020, 147(12): 3560-3573.
PANOUTSOPOULOU K, AVGERIS M, MAVRIDIS K, et al. miR-203 is an independent molecular predictor of prognosis and treatment outcome in ovarian cancer: A multi-institutional study [J]. Carcinogenesis, 2020, 41(4): 442-451.
INOUE J, INAZAWA J. Cancer-associated miRNAs and their therapeutic potential [J]. J Hum Genet, 2021, 66(9): 937-945.
HUA Y, JIN Z, ZHOU F, et al. The expression significance of serum MiR-21 in patients with osteosarcoma and its relationship with chemosensitivity [J]. Eur Rev Med Pharmacol Sci, 2017, 21(13): 2989-2994.
ZHAO A Q, LIU W L, CUI X L, et al. lncRNA TUSC7 inhibits osteosarcoma progression through the miR-181a/RASSF6 axis [J]. Int J Mol Med, 2021, 47(2): 583-594.
颜泉. 姜黄素对体内外骨肉瘤细胞增殖和侵袭的影响及其机制研究 [J]. 中国药房, 2018, 29(7): 918-922.
周丽. 姜黄素通过miR-21抑制骨肉瘤细胞增殖 [D]. 重庆: 重庆医科大学, 2020.
白洋, 黄纬, 张菲斐, 等. 姜黄素通过miR-181a调控KLF6表达抑制骨肉瘤细胞的生长 [J]. 武汉大学学报:医学版, 2022,doi: 10.14188/j.1671-8852.2021.0315http://dx.doi.org/10.14188/j.1671-8852.2021.0315.
吴峻. 姜黄素对骨肉瘤细胞增殖、凋亡影响及作用机制研究 [J]. 辽宁中医药大学学报, 2019, 21(5): 37-41.
何小进, 曾德华, 张雄. 姜黄素对人骨肉瘤MG63细胞增殖及Wnt/β-catenin信号通路相关基因表达的影响 [J]. 中国生物制品学杂志, 2012, 25(1): 78-81,90.
D'ARCY M S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy [J]. Cell Biol Int, 2019, 43(6): 582-592.
CAO K, TAIT S W G. Apoptosis and cancer: Force awakens, phantom menace, or both? [J]. Int Rev Cel Mol Bio, 2018, 337: 135-152.
BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death [J]. Nat Rev Mol Cell Bio, 2020, 21(2): 85-100.
JAN R, CHAUDHRY G E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics [J]. Adv Pharm Bull, 2019, 9(2): 205-218.
DILLON C P, GREEN D R. Molecular cell biology of apoptosis and necroptosis in cancer [J]. Adv Exp Med Biol, 2016, 930: 1-23.
KOPEINA G S, PROKHOROVA E A, LAVRIK I N, et al. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way [J]. Cell Prolif, 2018, 51(5): e12467.
原向伟, 黄秀芳. 姜黄素对骨肉瘤细胞增殖和凋亡的影响 [J]. 中国医药科学, 2017, 7(13): 30-32,58.
YANG J S, LIN R C, HSIEH Y H, et al. CLEFMA activates the extrinsic and intrinsic apoptotic processes through JNK1/2 and p38 pathways in human osteosarcoma cells [J]. Molecules, 2019, 24(18): 3280.
CHEN C, GUO Y, HUANG Q, et al. PI3K inhibitor impairs tumor progression and enhances sensitivity to anlotinib in anlotinib-resistant osteosarcoma [J]. Cancer Lett, 2022, doi: 10.1016/j.canlet. 2022.215660http://dx.doi.org/10.1016/j.canlet.2022.215660.
ZHANG J,DU Z,PAN S,et al.Overcoming multidrug resistance by codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive lipoplexes: In vitro and in vivo evaluation[J].ACS Appl Mater Interfaces,2018,10(25):21590-21600.
GOPISETTY M K, ADAMECZ D I, NAGY F I, et al. Androstano-arylpyrimidines: Novel small molecule inhibitors of MDR1 for sensitizing multidrug-resistant breast cancer cells [J]. Eur J Pharm Sci, 2021, 156: 105587.
肖扬. 姜黄素对人骨肉瘤细胞影响的实验研究 [D]. 长沙: 中南大学, 2008.
陈祖旺, 林晶, 陈雅君, 等. 姜黄素抑制自噬对骨肉瘤耐药细胞增殖、凋亡的影响 [J]. 临床骨科杂志, 2021, 24(6): 886-889.
CAI X, WENG Q, LIN J, et al. Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin [J]. Food Chem Toxicol, 2021, 151: 112110.
陈绪龙, 梁新丽, 刘欢, 等. 不同载药量姜黄素自纳米乳体外分散后相行为与稳定性的相关性考察 [J]. 中国实验方剂学杂志, 2021, 27(1): 154-161.
FEREYDOUNI N, MOVAFFAGH J, AMIRI N, et al. Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics [J]. Sci Rep, 2021, 11(1): 1902.
BARROS C,HIEBNER D W,FULAZ S,et al.Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity[J].J Nanobiotechnology,2021,19(1):104.
LOPES V F, GIONGO C N, DE ALMEIDA CAMPOS L, et al. Chitosan nanoparticles potentiate the in vitro and in vivo effects of curcumin and other natural compounds [J]. Curr Med Chem, 2021, 28(24): 4935-4953.
TAN B, WU Y, WU Y, et al. Curcumin-microsphere/IR820 hybrid bifunctional hydrogels for in situ osteosarcoma chemo-co-thermal therapy and bone reconstruction [J]. ACS Appl Mater Interfaces, 2021, 13(27): 31542-31553.
LI R,LIN Z,ZHANG Q,et al.Injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence[J].ACS Appl Mater Interfaces,2020,12(15):17936-17948.
XI Y,JIANG T,YU Y,et al.Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy[J].Int J Nanomedicine,2019,14:6425-6437.
DHULE S S,PENFORNIS P,HE J,et al.The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma[J].Mol Pharm,2014,11(2):417-427.
DHULE S S, PENFORNIS P, FRAZIER T, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma [J]. Nanomedicine, 2012, 8(4): 440-451.
CASALINO L, VERDE P. Multifaceted roles of DNA methylation in neoplastic transformation, from tumor suppressors to EMT and metastasis [J]. Genes (Basel), 2020, 11(8): 922.
NECHIN J,TUNSTALL E,RAYMOND N,et al.Hemimethylation of CpG dyads is characteristic of secondary DMRs associated with imprinted loci and correlates with 5-hydroxymethylcytosine at paternally methylated sequences[J].Epigenetics Chromatin,2019,12(1):64.
SONG D, NI J, XIE H, et al. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line [J]. Exp Ther Med, 2014, 7(5): 1071-1076.
胡文龙, 吴平平, 朱振国, 等. 姜黄素联合5-Aza-CdR对人骨肉瘤Saos-2细胞抑癌基因去甲基化的影响 [J]. 中药材, 2019, 42(12): 2958-2962.
万宇欣. 新型姜黄素前药的制备及其抗骨肉瘤作用的研究 [D]. 广州: 华南理工大学, 2020.
SARKAR N, BOSE S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering [J]. ACS Appl Mater Interfaces, 2019, 11(19): 17184-17192.
吴飞鹏. 抗肿瘤骨修复材料的制备及其性能研究 [D]. 广州: 广东工业大学, 2021.
0
Views
24
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution