浏览全部资源
扫码关注微信
1.北京中医药大学 中药学院,北京 102488
2.北京中医药大学 生命科学学院,北京 102488
3.北京中医药大学 北京中医药研究院,北京 100029
Received:24 April 2022,
Published Online:20 July 2022,
Published:05 March 2023
移动端阅览
吕迎兰,程龙,石璐等.芦丁促进3T3-L1前脂肪细胞棕色化及其机制[J].中国实验方剂学杂志,2023,29(05):137-143.
LYU Yinglan,CHENG Long,SHI Lu,et al.Rutin Promotes Browning of 3T3-L1 Preadipocytes and Its Mechanism[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(05):137-143.
吕迎兰,程龙,石璐等.芦丁促进3T3-L1前脂肪细胞棕色化及其机制[J].中国实验方剂学杂志,2023,29(05):137-143. DOI: 10.13422/j.cnki.syfjx.202201727.
LYU Yinglan,CHENG Long,SHI Lu,et al.Rutin Promotes Browning of 3T3-L1 Preadipocytes and Its Mechanism[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(05):137-143. DOI: 10.13422/j.cnki.syfjx.202201727.
目的
2
观察芦丁对3T3-L1前脂肪细胞棕色化效应的影响,并探讨其机制。
方法
2
细胞增殖与活性检测-8(CCK-8)法检测不同浓度芦丁(3.125、6.25、12.5、25、50、100、200 μmol·L
-1
)对3T3-L1细胞活性影响,蛋白免疫印迹法(Western blot)检测不同浓度芦丁(12.5、25、50 μmol·L
-1
)对脂肪细胞产热相关蛋白解偶联蛋白1(UCP1)、PR结构域蛋白16(PRDM16)、过氧化物酶体增殖物激活受体
γ
辅助激活因子-1
α
(PGC-1
α
)表达的影响。确定芦丁最佳浓度后,油红O染色观察芦丁对脂肪细胞中脂滴生成的影响,Western blot检测线粒体生物合成标志性蛋白核呼吸因子1(NRF1)、核呼吸因子2(NRF2)和线粒体转录因子A(TFAM)的表达。
结果
2
与空白组比较,200 μmol·L
-1
芦丁显著抑制3T3-L1细胞活性(
P
<
0.01);在12.5、25、50 μmol·L
-1
浓度下,50 μmol·L
-1
芦丁显著促进产热蛋白(UCP1、PRDM16、PGC-1
α
)表达(
P
<
0.01),确定为最佳浓度。与空白组比较,芦丁50 μmol·L
-1
显著增加3T3-L1细胞线粒体UCP1蛋白的免疫荧光强度(
P
<
0.01)及线粒体生物合成标志性蛋白NRF1、NRF2和TFAM的表达(
P
<
0.01),显著抑制3T3-L1脂肪细胞脂滴生成(
P
<
0.01)。
结论
2
芦丁可抑制3T3-L1脂肪细胞脂滴沉积,增加产热相关蛋白(UCP1、PRDM16和PGC-1
α
)及线粒体生物合成标志性蛋白(NRF1、NRF2和TFAM)的表达,从而诱导3T3-L1脂肪细胞棕色化,为开发安全调节白色细胞棕色化的药物提供实验室基础。
Objective
2
To investigate the effect of rutin on the browning of 3T3-L1 preadipocytes and the mechanism.
Method
2
Cell counting kit-8 (CCK-8) assay was used to detect the effect of different concentration of rutin (3.125, 6.25, 12.5, 25, 50, 100, 200 μmol·L
-1
) on 3T3-L1 cell activity, and Western blot to examine the effect of rutin (12.5, 25, 50 μmol·L
-1
) on the expression of thermogenesis-associated proteins uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16) and peroxisome proliferator-activated receptor
γ
coactivator-1
α
(PGC-1
α
) in adipocytes. After the optimal concentration of rutin was determined, the effect of rutin on lipid droplet formation in adipocytes was observed based on oil red O staining, and the expression of nuclear respiratory factor 1 (NRF1), nuclear respiratory factor 2 (NRF2) and mitochondrial transcription factor A (TFAM), which were the landmark proteins of mitochondrial biosynthesis, was detected by Western blot.
Result
2
Compared with the blank group, 200 μmol·L
-1
rutin inhibited 3T3-L1 cell activity (
P
<
0.01). Compared with the blank group, at the concentration of 12.5, 25, 50 μmol·L
-1
rutin significantly promoted the expression of thermogenesis-associated proteins (UCP1, PRDM16, and PGC-1
α
) (
P
<
0.01), which was determined as the optimal concentration. Compared with the blank group, 50 μmol·L
-1
rutin significantly increased the immunofluorescence intensity of mitochondrial UCP1 protein in 3T3-L1 cells (
P
<
0.01) and the expression of the markers of mitochondrial biosynthesis (NRF1, NRF2, and TFAM) (
P
<
0.01). In addition, 50 μmol·L
-1
rutin significantly inhibited lipid droplet formation of 3T3-L1 adipocytes (
P
<
0.01).
Conclusion
2
Rutin inhibited lipid droplet deposition in 3T3-L1 adipocytes and increased the expression of thermogenesis-related proteins (UCP1, PRDM16, and PGC-1
α
) and markers of mitochondrial biosynthesis (NRF1, NRF2, and TFAM), thereby inducing the browning of 3T3-L1 adipocytes. This lays a basis for the development of drugs that safely regulate the browning of white cells.
LOOS R J F , YEO G S H . The genetics of obesity: From discovery to biology [J]. Nat Rev Genet , 2022 , 23 ( 2 ): 120 - 133 .
LINGVAY I , SUMITHRAN P , COHEN R V , et al . Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation [J]. Lancet , 2022 , 399 ( 10322 ): 394 - 405 .
SAKERS A , DE SIQUEIRA M K , SEALE P , et al . Adipose-tissue plasticity in health and disease [J]. Cell , 2022 , 185 ( 3 ): 419 - 446 .
AUDANO M , PEDRETTI S , CARUSO D , et al . Regulatory mechanisms of the early phase of white adipocyte differentiation: An overview [J]. Cell Mol Life Sci , 2022 , 79 ( 3 ): 139 .
TRAYHURN P . Brown adipose tissue: A short historical perspective [J]. Methods Mol Biol , 2022 , 2448 : 1 - 18 .
BECHER T , PALANISAMY S , KRAMER D J , et al . Brown adipose tissue is associated with cardiometabolic health [J]. Nat Med , 2021 , 27 ( 1 ): 58 - 65 .
SEO S , LEE M S , CHANG E , et al . Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats [J]. Nutrients , 2015 , 7 ( 9 ): 8152 - 8169 .
HABTEMARIAM S , BELAI A . Natural therapies of the inflammatory bowel disease: The case of rutin and its aglycone, quercetin [J]. Mini-Rev Med Chem , 2018 , 18 ( 3 ): 234 - 243 .
CHUA L S . A review on plant-based rutin extraction methods and its pharmacological activities [J]. J Ethnopharmacol , 2013 , 150 ( 3 ): 805 - 817 .
HABTEMARIAM S , LENTINI G . The therapeutic potential of rutin for diabetes: An update [J]. Mini-Rev Med Chem , 2015 , 15 ( 7 ): 524 - 528 .
LYNGFELT L I , ERLANDSSON M C , NADALI M , et al . Impact of the uncoupling protein 1 on cardiovascular risk in patients with rheumatoid arthritis [J]. Cells , 2021 , 10 ( 5 ): 1131 .
KWAN H Y , WU J , SU T , et al . Cinnamon induces browning in subcutaneous adipocytes [J]. Sci Rep , 2017 , 7 ( 1 ): 2447 .
ZHAO D , PAN Y , YU N , et al . Curcumin improves adipocytes browning and mitochondrial function in 3T3-L1 cells and obese rodent model [J]. R Soc Open Sci , 2021 , 8 ( 3 ): 200974 .
FAN Q , XI P , TIAN D , et al . Ginsenoside Rb 1 facilitates browning by repressing Wnt/ β -catenin signaling in 3T3-L1 adipocytes [J]. Med Sci Monit , 2021 , 27 : e928619 .
MA L , ZHAO Z , GUO X , et al . Tanshinone Ⅱ A and its derivative activate thermogenesis in adipocytes and induce "beiging" of white adipose tissue [J]. Mol Cell Endocrinol , 2022 , 544 : 111557 .
CHENG L , SHI L , HE C , et al . Rutin-activated adipose tissue thermogenesis is correlated with increased intestinal short-chain fatty acid levels [J]. Phytother Res , 2022 , 36 ( 6 ): 2495 - 2510 .
CAI J , JIANG S , QUAN Y , et al . Skeletal muscle provides a pro-browning microenvironment for transplanted brown adipose tissue to maintain its effect to ameliorate obesity in ob/ob mice [J]. FASEB J , 2022 , 36 ( 1 ): e22056 .
YU J , CHEN X , ZHANG Y , et al . Antibiotic Azithromycin inhibits brown/beige fat functionality and promotes obesity in human and rodents [J]. Theranostics , 2022 , 12 ( 3 ): 1187 - 1203 .
ZHAO J , ZHOU A , QI W . The potential to fight obesity with adipogenesis modulating compounds [J]. Int J Mol Sci , 2022 , 23 ( 4 ): 2299 .
YOO A , JUNG KIM M , AHN J , et al . Fuzhuan brick tea extract prevents diet-induced obesity via stimulation of fat browning in mice [J]. Food Chem , 2022 , 377 : 132006 .
COLLINS S . β -adrenergic receptors and adipose tissue metabolism: Evolution of an old story [J]. Annu Rev Physiol , 2022 , 84 : 1 - 16 .
LEE J H , PARK A , OH K J , et al . The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases [J]. Int J Mol Sci , 2019 , 20 ( 19 ): 4924 .
LAHERA V , DE LAS HERAS N , LÓPEZ-FARRÉ A , et al . Role of mitochondrial dysfunction in hypertension and obesity [J]. Curr Hypertens Rep , 2017 , 19 ( 2 ): 11 .
HARTMAN M L , SHIRIHAI O S , HOLBROOK M , et al . Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus [J]. Vasc Med , 2014 , 19 ( 1 ): 67 - 74 .
WANG G , MEYER J G , CAI W , et al . Regulation of UCP1 and mitochondrial metabolism in brown adipose tissue by reversible succinylation [J]. Mol Cell , 2019 , 74 ( 4 ): 844 - 857.e7 .
PARRAY H A , YUN J W . Cannabidiol promotes browning in 3T3-L1 adipocytes [J]. Mol Cell Biochem , 2016 , 416 ( 1/2 ): 131 - 139 .
KOH J H , KIM Y W , SEO D Y , et al . Mitochondrial TFAM as a signaling regulator between cellular organelles: A perspective on metabolic diseases [J]. Diabetes Metab J , 2021 , 45 ( 6 ): 853 - 865 .
KOH J H , JOHNSON M L , DASARI S , et al . TFAM enhances fat oxidation and attenuates high-fat diet-induced insulin resistance in skeletal muscle [J]. Diabetes , 2019 , 68 ( 8 ): 1552 - 1564 .
WANG J , ZHANG L , DONG L , et al . 6-gingerol, a functional polyphenol of ginger, promotes browning through an AMPK-dependent pathway in 3T3-L1 adipocytes [J]. J Agric Food Chem , 2019 , 67 ( 51 ): 14056 - 14065 .
LI P A , HOU X , HAO S . Mitochondrial biogenesis in neurodegeneration [J]. J Neurosci Res , 2017 , 95 ( 10 ): 2025 - 2029 .
0
Views
39
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution