浏览全部资源
扫码关注微信
1.河南中医药大学,郑州 450046
2.河南中医药大学 第一附属医院,郑州 450000
Published:20 April 2023,
Published Online:21 July 2022,
Received:07 May 2022,
扫 描 看 全 文
常艺,张相安,郭海霞等.基于胆汁酸-肠道菌群轴探讨溃疡性结肠炎肝郁脾虚病机的生物学内涵[J].中国实验方剂学杂志,2023,29(08):229-236.
CHANG Yi,ZHANG Xiangan,GUO Haixia,et al.Biological Connotation of Pathogenesis of Ulcerative Colitis with Liver Depression and Spleen Deficiency Based on Bile Acid-intestinal Flora Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(08):229-236.
常艺,张相安,郭海霞等.基于胆汁酸-肠道菌群轴探讨溃疡性结肠炎肝郁脾虚病机的生物学内涵[J].中国实验方剂学杂志,2023,29(08):229-236. DOI: 10.13422/j.cnki.syfjx.202201730.
CHANG Yi,ZHANG Xiangan,GUO Haixia,et al.Biological Connotation of Pathogenesis of Ulcerative Colitis with Liver Depression and Spleen Deficiency Based on Bile Acid-intestinal Flora Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(08):229-236. DOI: 10.13422/j.cnki.syfjx.202201730.
溃疡性结肠炎(UC)是以腹痛、腹泻、黏液脓血便为主症的慢性难治性炎症性肠病之一。近年来随着人类生活方式的改变及诊断水平的提高,UC的发病率及患病率不断升高。UC的发病机制与肠黏膜免疫功能异常、肠道菌群紊乱、胆汁酸分泌异常等密切相关。UC患者存在胆汁酸分泌异常及肠道菌群失调。查阅大量文献发现胆汁酸分泌异常抑制免疫功能、影响信号转导、破坏肠黏膜屏障;肠道菌群紊乱,在炎症的发生发展、免疫稳态及应激方面具有重要影响。胆汁酸间接或直接影响肠道菌群的结构及功能,同时在肠道菌群的修饰下又可产生次级胆汁酸,并经过肠肝循环进入肝脏,故胆汁酸-肠道菌群轴之间复杂的对话机制与UC发生发展密切相关。基于中医基础理论及临床研究,发现情志是诱发该病的重要因素,脾胃虚弱为致病之本,肝郁脾虚是UC的关键病机。结合现代医学及分子生物学研究,认为胆汁酸异常分泌是中医肝郁的微观体现,肠道菌群紊乱为脾虚的生物学基础,并且在UC发病过程中,胆汁酸-肠道菌群轴失衡与中医的肝郁脾病机相契合。从胆汁酸-肠道菌群轴角度探讨UC肝郁脾虚病机的生物学内涵,更好地阐释UC肝郁脾虚发病机制的科学性,对于研究UC肝郁脾虚的病机实质及代表组方防治此病提供新的临床思路及可靠的理论依据。
Ulcerative colitis (UC) is one of the chronic refractory inflammatory bowel diseases characterized by abdominal pain, diarrhea, and mucus, pus and blood in the stool. In recent years, with changes in human life style and improvements of the diagnosis, the incidence and prevalence of UC have been increasing. The pathogenesis of UC is closely related to intestinal mucosal immune dysfunction, intestinal flora disturbance, and abnormal bile acid secretion. Patients with UC have abnormal bile acid secretion and intestinal flora imbalance. A large number of studies have found that abnormal bile acid secretion inhibits immune function, affects signal transduction, and destroys the intestinal mucosal barrier. Intestinal flora disturbance has an important impact on the occurrence and development of inflammation, immune homeostasis, and stress. Bile acids indirectly or directly affect the structure and function of intestinal flora, and at the same time, they produce secondary bile acids under the modification of intestinal flora, entering the liver through enterohepatic circulation. Therefore, the complex dialogue mechanism of bile acid-intestinal flora axis is closely related to the occurrence and development of UC. Based on the basic theory of traditional Chinese medicine(TCM) and clinical research, it is found that emotion is an important factor that induces this disease, spleen and stomach weakness is the root of the disease, and liver depression and spleen deficiency are the key pathogenesis of UC. Combined with modern medicine and molecular biology research, it is believed that abnormal secretion of bile acids is a microscopic manifestation of liver depression in TCM, and intestinal flora disturbance is the biological basis of spleen deficiency. In the pathogenesis of UC, the imbalanced bile acid-intestinal flora axis is consistent with the pathogenesis of liver depression and spleen in TCM. The exploration of the biological connotation of the pathogenesis of UC with liver depression and spleen deficiency from the perspective of bile acid-intestinal flora axis can better explain the scientific nature of its pathogenesis, which provides new clinical solutions and reliable references for studying the pathogenesis of UC with liver depression and spleen deficiency and finding representative prescriptions to prevent and treat this disease.
胆汁酸-肠道菌群轴溃疡性结肠炎肝郁脾虚生物学内涵
bile acid-intestinal flora axisulcerative colitisliver depression and spleen deficiencybiological connotation
SEGAL J P, LEBLANC J F, HART A L. Ulcerative colitis: An update[J]. Clin Med (Lond), 2021, 21(2): 135-139.
WEI S C, SOLLANO J, HUI Y T, et al. Epidemiology, burden of disease, and unmet needs in the treatment of ulcerative colitis in Asia[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(3): 275-289.
PARK J, CHEON J H. Incidence and prevalence of inflammatory bowel disease across asia[J]. Yonsei Med J, 2021, 62(2): 99-108.
ZENG H, UMAR S, RUST B, et al. Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer[J]. Int J Mol Sci, 2019, 20(5): 1214.
LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.
NIE P, LI Z, WANG Y, et al. Gut microbiome interventions in human health and diseases[J]. Med Res Rev, 2019, 39(6): 2286-2313.
FEUERSTEIN J D, ISAACS K L, SCHNEIDER Y, et al. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis[J]. Gastroenterology, 2020, 158(5): 1450-1461.
POLAND J C, FLYNN C R. Bile acids, their receptors, and the gut microbiota[J]. Physiology (Bethesda), 2021, 36(4): 235-245.
WU Y, ZHOU A, TANG L, et al. Bile acids: Key regulators and novel treatment targets for type 2 diabetes[J]. J Diabetes Res, 2020, doi: 10.1155/2020/6138438http://dx.doi.org/10.1155/2020/6138438.
LI R, ANDREU-SANCHEZ S, KUIPERS F, et al. Gut microbiome and bile acids in obesity-related diseases[J]. Best Pract Res Clin Endocrinol Metab, 2021, 35(3): 101493.
XIE A J, MAI C T, ZHU Y Z, et al. Bile acids as regulatory molecules and potential targets in metabolic diseases[J]. Life Sci, 2021, doi: 10.1016/j.lfs.2021.120152http://dx.doi.org/10.1016/j.lfs.2021.120152.
GVOIC M, VUKMIROVIC S, AL-SALAMI H, et al. Bile acids as novel enhancers of CNS targeting antitumor drugs: A comprehensive review[J]. Pharm Dev Technol, 2021, 26(6): 617-633.
JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.
BIAGIOLI M, MARCHIANO S, CARINO A, et al. Bile acids activated receptors in inflammatory bowel disease[J]. Cells, 2021, 10(6): 1281.
SCHNEIDER K M, ALBER S, TRAUTWEIN C. Role of bile acids in the gut-liver axis[J]. J Hepatol, 2018, 68(5): 1083-1085.
FIORUCCI S, CARINO A, BALDONI M, et al. bile acid signaling in inflammatory bowel diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693.
FIORUCCI S, BIAGIOLI M, ZAMPELLA A, et al. Bile acids activated receptors regulate innate immunity[J]. Front Immunol, 2018, doi: 10.3389/fimmu.2018.01853http://dx.doi.org/10.3389/fimmu.2018.01853.
BIAGIOLI M, CARINO A, CIPRIANI S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis[J]. J Immunol, 2017, 199(2): 718-733.
KOK T, HULZEBOS C V, WOLTERS H, et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: Efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein[J]. J Biol Chem, 2003, 278(43): 41930-41937.
BAUMGARTNER M, LANG M, HOLLEY H, et al. Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis[J]. Gastroenterology, 2021, 161(4): 1245-1256.
AHLAWAT S, KUMAR P, MOHAN H, et al. Inflammatory bowel disease: Tri-directional relationship between microbiota,immune system and intestinal epithelium[J]. Crit Rev Microbiol, 2021, 47(2): 254-273.
OHKUSA T, KOIDO S. Intestinal microbiota and ulcerative colitis[J]. J Infect Chemother, 2015, 21(11): 761-768.
何碧瑜,王佩茹,杨维忠,等.溃疡性结肠炎患者炎性因子水平、肠道菌群分布及发病相关因素分析[J].华南预防医学,2022,48(2):178-181.
TANG Y H, LIU H C, SONG G, et al. A case-control study on the association of intestinal flora with ulcerative colitis[J]. AMB Express, 2021, 11(1): 106.
HONDA K, LITTMAN D R. The microbiota in adaptive immune homeostasis and disease[J]. Nature, 2016, 535(7610): 75-84.
KE J,LI Y,HAN C,et al.Fucose Ameliorate intestinal inflammation through modulating the crosstalk between bile acids and gut microbiota in a chronic colitis murine model[J].Inflamm Bowel Dis,2020,26(6):863-873.
GUO X Y, LIU X J, HAO J Y. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment[J]. J Dig Dis, 2020, 21(3): 147-159.
WINSTON J A, THERIOT C M. Diversification of host bile acids by members of the gut microbiota[J]. Gut Microbes, 2020, 11(2): 158-171.
SHAO J W,GE T T,CHEN S Z,et al.Role of bile acids in liver diseases mediated by the gut microbiome[J].World J Gastroenterol,2021,27(22):3010-3021.
DI CIAULA A, GARRUTI G, LUNARDI BACCETTO R, et al. Bile acid physiology[J]. Ann Hepatol, 2017, 16(Suppl 1): s4-s14.
RAMIREZ-PEREZ O, CRUZ-RAMON V, CHINCHILLA-LOPEZ P, et al. The role of the gut microbiota in bile acid metabolism[J]. Ann Hepatol, 2017, 16(Suppl 1): s15-s20.
XU M, CEN M, SHEN Y, et al. Deoxycholic acid-induced gut dysbiosis disrupts bile acid enterohepatic circulation and promotes intestinal inflammation[J]. Dig Dis Sci, 2021, 66(2): 568-576.
PARSEUS A, SOMMER N, SOMMER F, et al. Microbiota-induced obesity requires farnesoid X receptor[J]. Gut, 2017, 66(3): 429-437.
GONZALEZ F J, JIANG C, XIE C, et al. Intestinal farnesoid X receptor signaling modulates metabolic disease[J]. Dig Dis, 2017, 35(3): 178-184.
MASSAFRA V, IJSSENNAGGER N, PLANTINGA M, et al. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis[J]. Biochim Biophys Acta, 2016, 1862(2): 166-173.
HORACKOVA S, PLOCKOVA M, DEMNEROVA K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction[J]. Biotechnol Adv, 2018, 36(3): 682-690.
OUT C, PATANKAR J V, DOKTOROVA M, et al. Gut microbiota inhibit asbt-dependent intestinal bile acid reabsorption via Gata4[J]. J Hepatol, 2015, 63(3): 697-704.
JIANG C, XIE C, LI F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest, 2015, 125(1): 386-402.
WAHLSTROM A, KOVATCHEVA-DATCHARY P, STAHLMAN M, et al. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota[J]. J Lipid Res, 2017, 58(2): 412-419.
LI F, JIANG C, KRAUSZ K W, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity[J]. Nat Commun, 2013, doi: 10.1038/ncomms3384http://dx.doi.org/10.1038/ncomms3384.
YANG ZH, LIU F, ZHU X R, et al. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis[J]. World J Gastroenterol, 2021, 27(24): 3609-3629.
LIU L, DONG W, WANG S, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis[J]. Food Funct, 2018, 9(11): 5588-5597.
秦书敏,张海燕,吴皓萌,等.基于现代文献的溃疡性结肠炎证候及证素分布特点研究[J].环球中医药,2021,14(3):389-394.
刘忻颖,陈胜良.精神心理因素在溃疡性结肠炎中作用的研究进展[J].胃肠病学,2018,23(3):173-176.
何其洋,陈敏,龙文玲.基于脑肠轴学说探讨溃疡性结肠炎中医情志发病机制[J].世界最新医学信息文摘,2019,19(82):112-113.
公培云,何莉,陈雪芹,等.中医情志护理对肝郁脾虚型溃疡性结肠炎患者的影响[J].齐鲁护理杂志,2017,23(13):55-57.
CHIANG J Y L, FERRELL J M. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019, doi: 10.1146/annurev-nutr-082018-124344http://dx.doi.org/10.1146/annurev-nutr-082018-124344.
李杰. 小柴胡汤加减方对胆道术后脂餐饮食下血清中胆汁酸影响的临床研究[D].南京:南京中医药大学,2016.
吴菲,向华,阳丽.柴胡疏肝散加味干预妊娠期肝内胆汁淤积症临床疗效分析[J].中医药导报,2016,22(8):83-85.
JIA H M, LI Q, ZHOU C, et al. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression[J]. Sci Rep, 2016, doi: 10.1038/srep23441http://dx.doi.org/10.1038/srep23441.
JIA H M, YU M, MA L Y, et al. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, doi: 10.1016/j.jchromb.2017.08.003http://dx.doi.org/10.1016/j.jchromb.2017.08.003.
刘馨烛. 基于FXR探讨茵陈蒿汤调控非酒精性脂肪性肝病合并胆汁淤积小鼠胆汁酸和脂肪代谢效应机制研究[D].上海:上海中医药大学,2019.
HUANG F, WANG T, LAN Y, et al. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior[J]. Front Behav Neurosci, 2015, doi: 10.3389/fnbeh.2015.00070http://dx.doi.org/10.3389/fnbeh.2015.00070.
边甜甜,司昕蕾,牛江涛,等.脾气虚证与肠道菌群的相关性及健脾益气中药对肠道菌群的调节作用研究进展[J].中药药理与临床,2022,doi:10.13412/j.cnki.zyyl.20210924.002http://dx.doi.org/10.13412/j.cnki.zyyl.20210924.002.
陈晓辉,杨相振,李耀洋,等.基于“肠道菌群-肿瘤微环境”探讨脾虚对肿瘤形成的影响[J].时珍国医国药,2020,31(7):1672-1674.
刘佳,彭颖,张硕颖,等.老年脾虚患者肠道菌群16S rDNA变性梯度凝胶电泳分析[J].中华中医药杂志,2010,25(10):1566-1569.
马芳笑,吴佳倩,柯一帆,等.脾虚型溃疡性结肠炎患者的肠道菌群特征研究[J].浙江中医药大学学报,2020,44(6):514-521.
王静,梁山玉,杨燕.运脾止泻汤对脾虚型迁延性腹泻患儿肠道微生态的干预作用[J].中国妇幼保健,2016,31(6):1322-1324.
闫蕴孜,孙凌云,闫韶花,等.基于中医脾虚量表的结直肠癌患者临床特征、肠道菌群及免疫功能相关性研究[J].中国中医基础医学杂志,2022,28(3):405-411.
郑昊龙,陈丝,宋囡,等.脾虚模型大鼠肠道菌群分布及时效性研究[J].中医杂志,2020,61(14):1262-1267.
陈嘉辉. 脾气虚证模型大鼠的肠道菌群及其代谢组学研究[D].广州:广州中医药大学,2017.
田雨,丁艳平,邵宝平,等.黄芪等药食同源类中药作为功能性食品与肠道菌群的相互作用[J].中国中药杂志,2020,45(11):2486-2492.
李寒冰,董贝贝,吴宿慧,等.人参与大鼠及人源肠道菌相互作用的差异研究[J].中华中医药杂志,2020,35(6):3113-3118.
黄文武,彭颖,王梦月,等.四君子汤及其单味药水煎液对脾虚大鼠肠道菌群的调节作用[J].中国实验方剂学杂志,2019,25(11):8-15.
赵春一,肖荣,杨玲玲,等.从肠道菌群角度探讨补中益气汤治疗脾虚型失眠疗效[J].广州中医药大学学报,2020,37(11):2057-2063.
WELLMAN A S, METUKURI M R, KAZGAN N, et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota[J]. Gastroenterology, 2017, 153(3): 772-786.
MURAKAMI M, IWAMOTO J, HONDA A, et al. Detection of gut dysbiosis due to reduced clostridium subcluster XIVa using the fecal or serum bile acid profile[J]. Inflamm Bowel Dis, 2018, 24(5): 1035-1044.
张声生,沈洪,郑凯,等.溃疡性结肠炎中医诊疗专家共识意见(2017)[J].中华中医药杂志,2017,32(8):3585-3589.
0
Views
19
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution