浏览全部资源
扫码关注微信
1.陕西中医药大学 基础医学院,陕西 咸阳 712046
2.陕西中医药大学 医学科研实验中心,陕西 咸阳 712046
Published:20 June 2023,
Published Online:21 July 2022,
Received:05 May 2022,
扫 描 看 全 文
王思宇,王宇.肝细胞癌脂质代谢重编程及中药干预的研究进展[J].中国实验方剂学杂志,2023,29(12):230-240.
WANG Siyu,WANG Yu.Lipid Metabolism Reprogramming and Chinese Medicine Intervention in Hepatocellular Carcinoma: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(12):230-240.
王思宇,王宇.肝细胞癌脂质代谢重编程及中药干预的研究进展[J].中国实验方剂学杂志,2023,29(12):230-240. DOI: 10.13422/j.cnki.syfjx.202201823.
WANG Siyu,WANG Yu.Lipid Metabolism Reprogramming and Chinese Medicine Intervention in Hepatocellular Carcinoma: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(12):230-240. DOI: 10.13422/j.cnki.syfjx.202201823.
肝细胞癌(HCC)被认为是最具侵袭性的肿瘤之一,常发生于慢性肝病和肝硬化患者。尽管目前的治疗方法有所进步,但由于其进展不明显,直到晚期才有明显症状,在诊断时已失去根治性肝切除术或经肝动脉化疗栓塞术等局限性治疗的机会,预后较差。与正常细胞比较,肿瘤细胞对能量的需求更大,通过进行代谢重编程的方式以维持其生长增殖及转移,因此代谢重编程是肿瘤发生的标志之一。糖代谢、脂质代谢、氨基酸代谢和核苷酸代谢是几种常见的细胞代谢方式,由于肝脏是脂质代谢的主要器官,因此HCC的发生发展过程多伴有异常的脂质代谢。在HCC脂质代谢重编程中涉及多种酶、蛋白、基因、信号通路及代谢产物,他们的异常表达可通过多种机制促进脂质合成和脂滴累积,进一步影响HCC细胞的增殖、迁移、侵袭、自噬、凋亡及血管生成等过程。近年来,中药在肿瘤治疗方面表现出巨大潜力,引起学者们的广泛关注。研究发现,中药有效成分和中药复方可以通过调控脂质代谢相关酶、蛋白及信号通路,抑制HCC中脂质的从头合成、减少脂质累积水平,进而抑制HCC的发生发展过程。本文总结了HCC中脂质代谢相关调节因子的作用机制及中药通过调控脂质代谢重编程抑制HCC的相关研究,并展望脂质代谢作为中药治疗HCC新靶点的应用前景,以期为HCC的临床治疗提供参考。
Hepatocellular carcinoma (HCC) is considered to be one of the most aggressive tumors. It often occurs in patients with chronic liver disease and liver cirrhosis. Although research achievements have been attained in the current treatment methods, the opportunity of radical hepatectomy or transcatheter arterial chemoembolization has been lost due to the unobvious progression and no obvious symptoms until the late stage, which results in the poor prognosis. Tumor cells need more energy than normal cells. They maintain their growth, proliferation, and metastasis through metabolic reprogramming. Therefore, metabolic reprogramming is one of the signs of tumorigenesis. Glucose metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism are several common cellular metabolism modes. Because the liver is the main organ of lipid metabolism, the occurrence and development of HCC is often accompanied by abnormal lipid metabolism. A variety of enzymes, proteins, genes, signaling pathways, and metabolites are involved in the lipid metabolism reprogramming of HCC. Their abnormal expression can promote lipid synthesis and lipid droplet accumulation through a variety of mechanisms, and further affect the proliferation, migration, invasion, autophagy, apoptosis, and angiogenesis of HCC cells. In recent years, traditional Chinese medicine (TCM) has demonstrated great potential in the treatment of tumors, which has attracted wide attention of scholars. The effective components in Chinese herbal medicines and Chinese medicine compound prescriptions can inhibit the de novo synthesis of lipids, lower the level of lipid accumulation, and then inhibit the occurrence and development of HCC by regulating the lipid metabolism-related enzymes, proteins, and signaling pathways. This review summarizes the mechanism of the factors regulating lipid metabolism in HCC and the research progress in the TCM inhibition of HCC by regulating lipid metabolism reprogramming, and makes an outlook on the application prospect of lipid metabolism as a new target of TCM in the treatment of HCC, aiming to provide reference for the clinical treatment of HCC.
中药肝细胞癌脂质代谢作用机制
traditional Chinese medicinehepatocellular carcinomalipid metabolismmechanism
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
BOROUGHS L K, DEBERARDINIS R J. Metabolic pathways promoting cancer cell survival and growth[J]. Nat Cell Biol, 2015,17(4):351-359.
ELTAYEB K, LA MONICA S, TISEO M, et al. Reprogramming of lipid metabolism in lung cancer: An overview with focus on EGFR-mutated non-small cell lung cancer[J]. Cells, 2022,11(3):413.
NENU I, STEFANESCU H, PROCOPET B, et al. Navigating through the lipid metabolism maze: Diagnosis and prognosis metabolites of hepatocellular carcinoma versus compensated cirrhosis[J]. J Clin Med, 2022,11(5):1292.
LIU H,ZHANG Z,SONG L,et al.Lipid metabolism of cancer stem cells[J].Oncol Lett,2022,23(4):119.
MOLENDIJK J, ROBINSON H, DJURIC Z, et al. Lipid mechanisms in hallmarks of cancer[J]. Mol Omics, 2020,16(1):6-18.
FAHY E,SUBRAMANIAM S,MURPHY R C,et al.Update of the LIPID MAPS comprehensive classification system for lipids[J].J Lipid Res,2009,50(Suppl):S9-S14.
LI H, FENG Z, HE M L. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells[J]. Theranostics, 2020,10(16):7053-7069.
JAKOBSSON A, WESTERBERG R, JACOBSSON A. Fatty acid elongases in mammals: Their regulation and roles in metabolism[J]. Prog Lipid Res, 2006,45(3):237-249.
KORSHUNOV D A, KONDAKOVA I V, SHASHOVA E E. Modern perspective on metabolic reprogramming in malignant neoplasms[J]. Biochemistry (Mosc), 2019,84(10):1129-1142.
赵丽,彭瑞,朱明雪,等.肿瘤脂代谢重编程研究进展[J].国际检验医学杂志,2022,43(3):367-370,384.
ZECHNER R, ZIMMERMANN R, EICHMANN T O, et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling[J]. Cell Metab, 2012,15(3):279-291.
CHEN M, HUANG J. The expanded role of fatty acid metabolism in cancer: New aspects and targets[J]. Precis Clin Med, 2019,2(3):183-191.
CUI M Y, YI X, ZHU D X, et al. Aberrant lipid metabolism reprogramming and immune microenvironment for gastric cancer: A literature review[J]. Transl Cancer Res, 2021,10(8):3829-3842.
ZHANG T, GUO Z, HUO X, et al. Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor[J]. E Bio Medicine, 2022, doi: 10.1016/j.ebiom.2022.103872http://dx.doi.org/10.1016/j.ebiom.2022.103872.
POPE E D, KIMBROUGH E O, VEMIREDDY L P, et al. Aberrant lipid metabolism as a therapeutic target in liver cancer[J]. Expert Opin Ther Targets, 2019,23(6):473-483.
KHAN W, AUGUSTINE D, RAO R S, et al. Lipid metabolism in cancer: A systematic review[J]. J Carcinog, 2021, doi: 10.4103/jcar.JCar_15_20http://dx.doi.org/10.4103/jcar.JCar_15_20.
ASCENZI F, DE VITIS C, MAUGERI-SACCÀ M, et al. SCD1, autophagy and cancer: Implications for therapy[J]. J Exp Clin Cancer Res, 2021,40(1):265.
TRACZ-GASZEWSKA Z, DOBRZYN P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer[J]. Cancers (Basel), 2019,11(7):948.
BANSAL S, BERK M, ALKHOURI N, et al. Stearoyl-CoA desaturase plays an important role in proliferation and chemoresistance in human hepatocellular carcinoma[J]. J Surg Res, 2014,186(1):29-38.
HUANG G M, JIANG Q H, CAI C, et al. SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway[J]. Cancer Lett, 2015, 358(2): 180-190.
MA M,LAU E,LEUNG D,et al.Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation[J].J Hepatol,2017,67(5):979-990.
CHE L, PALIOGIANNIS P, CIGLIANO A, et al. Pathogenetic, prognostic, and therapeutic role of fatty acid synthase in human hepatocellular carcinoma[J]. Front Oncol, 2019, doi: 10.3389/fonc.2019.01412http://dx.doi.org/10.3389/fonc.2019.01412.
HAO Q, LI T, ZHANG X, et al. Expression and roles of fatty acid synthase in hepatocellular carcinoma[J]. Oncol Rep, 2014,32(6):2471-2476.
LI L, PILO G M, LI X, et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by Akt in mice and humans[J]. J Hepatol, 2016,64(2):333-341.
HU J, CHE L, LI L, et al. Co-activation of Akt and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice[J]. Sci Rep, 2016, doi: 10.1038/srep20484http://dx.doi.org/10.1038/srep20484.
CHE L, PILO M G, CIGLIANO A, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma[J]. Cell Cycle, 2017,16(6):499-507.
JIA J, CHE L, CIGLIANO A, et al. Pivotal role of fatty acid synthase in c-Myc driven hepatocarcinogenesis[J]. Int J Mol Sci, 2020,21(22):8467.
ZHANG W, HUANG J, TANG Y, et al. Inhibition of fatty acid synthase (FASN) affects the proliferation and apoptosis of HepG2 hepatoma carcinoma cells via the β-catenin/C-Myc signaling pathway[J]. Ann Hepatol, 2020,19(4):411-416.
QIU Z, ZHANG C, ZHOU J, et al. Celecoxib alleviates Akt/c-Met-triggered rapid hepatocarcinogenesis by suppressing a novel COX-2/Akt/FASN cascade[J]. Mol Carcinog, 2019,58(1):31-41.
CHE L, CHI W, QIAO Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans[J]. Gut, 2020,69(1):177-186.
DOMINGUEZ M, BRÜNE B, NAMGALADZE D. Exploring the role of ATP-citrate lyase in the immune system[J]. Front Immunol, 2021, doi: 10.3389/fimmu.2021.632526http://dx.doi.org/10.3389/fimmu.2021.632526.
DING H, LIU J, WANG C, et al. NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA[J]. Cancer Cell Int, 2020, doi: 10.1186/s12935-020-01520-4http://dx.doi.org/10.1186/s12935-020-01520-4.
ZHENG Y, ZHOU Q, ZHAO C, et al. ATP citrate lyase inhibitor triggers endoplasmic reticulum stress to induce hepatocellular carcinoma cell apoptosis via p-eIF2α/ATF4/CHOP axis[J]. J Cell Mol Med, 2021,25(3):1468-1479.
HAN Q, CHEN CA, YANG W, et al. ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway[J]. Hepatobiliary Pancreat Dis Int, 2021,20(3):251-261.
SUN H, WANG F, HUANG Y, et al. Targeted inhibition of ACLY expression to reverse the resistance of sorafenib in hepatocellular carcinoma[J]. J Cancer, 2022,13(3):951-964.
WANG Y, YU W, LI S, et al. Acetyl-CoA carboxylases and diseases[J]. Front Oncol, 2022, doi: 10.3389/fonc.2022.836058http://dx.doi.org/10.3389/fonc.2022.836058.
JEONG A, KIM J H, LEE H J, et al. Reactive oxygen species dependent phosphorylation of the liver kinase B1/AMP activated protein kinase/ acetyl-CoA carboxylase signaling is critically involved in apoptotic effect of lambertianic acid in hepatocellular carcinoma cells[J]. Oncotarget, 2017,8(41):70116-70129.
LALLY J S V, GHOSHAL S, DEPERALTA D K, et al. Inhibition of Acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma[J]. Cell Metab, 2019,29(1):174-182.e5.
CHENG X, LI J, GUO D. SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy[J]. Curr Top Med Chem, 2018,18(6):484-493.
JIANG T, ZHANG G, LOU Z. Role of the sterol regulatory element binding protein pathway in tumorigenesis[J]. Front Oncol, 2020, doi: 10.3389/fonc.2020.01788http://dx.doi.org/10.3389/fonc.2020.01788.
MORIOKA S, SAI K, OMORI E, et al. TAK1 regulates hepatic lipid homeostasis through SREBP[J]. Oncogene, 2016,35(29):3829-3838.
LI N, ZHOU Z S, SHEN Y,et al. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice[J]. Hepatology, 2017,65(6):1936-1947.
XIAO X, SONG B L. SREBP: A novel therapeutic target[J]. Acta Biochim Biophys Sin (Shanghai), 2013,45(1):2-10.
LI C, YANG W, ZHANG J, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma[J]. Int J Mol Sci, 2014,15(5):7124-7138.
MIN X, WEN J, ZHAO L, et al. Role of hepatoma-derived growth factor in promoting de novo lipogenesis and tumorigenesis in hepatocellular carcinoma[J]. Mol Oncol, 2018,12(9):1480-1497.
WANG C, TONG Y, WEN Y, et al. Hepatocellular carcinoma-associated protein TD26 interacts and enhances sterol regulatory element-binding protein 1 activity to promote tumor cell proliferation and growth[J]. Hepatology, 2018,68(5):1833-1850.
ZOU X Z, HAO J F, ZHOU X H. Inhibition of SREBP-1 activation by a novel small-molecule inhibitor enhances the sensitivity of hepatocellular carcinoma tissue to radiofrequency ablation[J]. Front Oncol, 2021, doi: 10.3389/fonc.2021.796152http://dx.doi.org/10.3389/fonc.2021.796152.
AMIRI M, YOUSEFNIA S, SEYED FOROOTAN F, et al. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers[J]. Gene, 2018,676:171-183.
KU C Y, LIU Y H, LIN H Y, et al. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma[J]. Oncotarget, 2016,7(14):18229-18246.
OHATA T, YOKOO H, KAMIYAMA T, et al. Fatty acid-binding protein 5 function in hepatocellular carcinoma through induction of epithelial-mesenchymal transition[J]. Cancer Med, 2017,6(5):1049-1061.
PAN L, XIAO H, LIAO R, et al. Fatty acid binding protein 5 promotes tumor angiogenesis and activates the IL6/STAT3/VEGFA pathway in hepatocellular carcinoma[J]. Biomed Pharmacother, 2018,106:68-76.
WANG N, CHEN S, ZHANG B, et al. 8U, a pro-apoptosis/cell cycle arrest compound, suppresses invasion and metastasis through HSP90α downregulating and PI3K/Akt inactivation in hepatocellular carcinoma cells[J]. Sci Rep, 2018,8(1):309.
LIAO X, SONG L, ZHANG L, et al. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway[J]. Mol Cell Endocrinol, 2018,470:160-167.
LIU G, SUN B Y, SUN J, et al. BRG1 regulates lipid metabolism in hepatocellular carcinoma through the PIK3AP1/PI3K/Akt pathway by mediating GLMP expression[J]. Dig Liver Dis, 2022,54(5):692-700.
ASLAM M, LADILOV Y. Emerging role of cAMP/AMPK signaling[J]. Cells, 2022,11(2):308.
LI C, HUANG Z, ZHU L, et al. The contrary intracellular and extracellular functions of PEDF in HCC development[J]. Cell Death Dis, 2019,10(10):742.
REN Y, GU Y K, LI Z, et al. CXCR3 confers sorafenib resistance of HCC cells through regulating metabolic alteration and AMPK pathway[J]. Am J Transl Res, 2020,12(3):825-836.
LI M, HU J, JIN R, et al. Effects of LRP1B regulated by HSF1 on lipid metabolism in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2020,7:361-376.
WANG M D, WANG N Y, ZHANG H L, et al. Fatty acid transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming cellular energy metabolism and regulating the AMPK-mTOR signaling pathway[J]. Oncogenesis, 2021,10(11):74.
ZHANG Y, XU J, QIU Z, et al. STK25 enhances hepatocellular carcinoma progression through the STRN/AMPK/ACC1 pathway[J]. Cancer Cell Int, 2022,22(1):4.
LI J, HUANG Q, LONG X, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and p38/PPARα pathways[J]. J Hepatol, 2015,63(6):1378-1389.
YIN F, SHAREN G, YUAN F, et al. TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway[J]. Oncogenesis, 2017,6(6): e347.
WANG X, LIAO X, YU T, et al. Analysis of clinical significance and prospective molecular mechanism of main elements of the JAK/STAT pathway in hepatocellular carcinoma[J]. Int J Oncol, 2019,55(4):805-822.
LI T, WENG J, ZHANG Y, et al. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma[J]. Cell Death Dis, 2019,10(8):619.
LIAO W, DU J, WANG Z, et al. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma[J]. Int J Cancer, 2022,151(3):337-347.
SUTANDYO N. The role of microRNA in cancer cachexia and muscle wasting: A review article[J]. Caspian J Intern Med, 2021,12(2):124-128.
ESAU C, DAVIS S, MURRAY S F, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab, 2006,3(2):87-98.
CUI M, WANG Y, SUN B, et al. MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA[J]. Biochem Biophys Res Commun, 2014,444(2):270-275.
CUI M, XIAO Z, SUN B, et al. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4[J]. Biochem Biophys Res Commun, 2014,445(3):651-655.
ZHANG H, FENG Z, HUANG R, et al. MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1[J]. Int J Oncol, 2014,45(5):2143-2152.
ZHAO G, DONG L, SHI H, et al. MicroRNA-1207-5p inhibits hepatocellular carcinoma cell growth and invasion through the fatty acid synthase-mediated Akt/mTOR signalling pathway[J]. Oncol Rep, 2016,36(3):1709-1716.
CHENG L, ZHU Y, HAN H, et al. MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice[J]. Cell Death Dis, 2017,8(7):e2916.
LIN Y X, WU X B, ZHENG C W, et al. Mechanistic investigation on the regulation of FABP1 by the IL-6/miR-603 signaling in the pathogenesis of hepatocellular carcinoma[J]. Biomed Res Int, 2021,doi: 10.1155/2021/8579658http://dx.doi.org/10.1155/2021/8579658.
LI H, CHEN Z, ZHANG Y, et al. MiR-4310 regulates hepatocellular carcinoma growth and metastasis through lipid synthesis[J]. Cancer Lett, 2021,519:161-171.
ZHANG T, ZHANG Y, LIU J, et al. MicroRNA-377-3p inhibits hepatocellular carcinoma growth and metastasis through negative regulation of CPT1C-mediated fatty acid oxidation[J]. Cancer Metab, 2022,10(1):2.
TAN Y T, LIN J F, LI T, et al. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer[J]. Cancer Commun (Lond), 2021,41(2):109-120.
CUI M, XIAO Z, WANG Y, et al. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway[J]. Cancer Res, 2015,75(5):846-857.
LIU X, LIANG Y, SONG R, et al. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation[J]. Mol Cancer, 2018,17(1):90.
WANG H, ZHANG Y, GUAN X, et al. An integrated transcriptomics and proteomics analysis implicates lncRNA MALAT1 in the regulation of lipid metabolism[J]. Mol Cell Proteomics, 2021, doi: 10.1016/j.mcpro.2021.100141http://dx.doi.org/10.1016/j.mcpro.2021.100141.
SØNDERGAARD J N,SOMMERAUER C,ATANASOAI I,et al.CCT3-LINC00326 axis regulates hepatocarcinogenic lipid metabolism[J].Gut,2022,71(10):2081-2092.
BUDHU A, ROESSLER S, ZHAO X, et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes[J]. Gastroenterology, 2013,144(5):1066-1075.
RESSOM H W, XIAO J F, TULI L, et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis[J]. Anal Chim Acta, 2012,743:90-100.
CAI F F, SONG Y N, LU Y Y, et al. Analysis of plasma metabolic profile, characteristics and enzymes in the progression from chronic hepatitis B to hepatocellular carcinoma[J]. Aging (Albany NY), 2020,12(14):14949-14965.
GEYER T, RÜBENTHALER J, ALUNNI-FABBRONI M, et al. NMR-based lipid metabolite profiles to predict outcomes in patients undergoing interventional therapy for a hepatocellular carcinoma (HCC): A substudy of the SORAMIC trial[J]. Cancers (Basel), 2021,13(11):2787.
YANG N, LI C, LI H, et al. Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells[J]. Front Pharmacol, 2019, doi: 10.3389/fphar.2019.00709http://dx.doi.org/10.3389/fphar.2019.00709.
KIM Y S, LEE Y M, OH T I, et al. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism[J]. Int J Mol Sci, 2018,19(10):3127.
朱艺. 大黄素通过下调SCAP抑制肝癌体内移植瘤的生长[D].武汉:湖北中医药大学,2020.
向龙超. 制何首乌醇提物(HSWE)通过下调SREBP1抑制肝癌细胞的脂肪代谢[D]. 武汉:湖北医药学院,2017.
KIM G H, KAN S Y, KANG H, et al. Ursolic acid suppresses cholesterol biosynthesis and exerts anti-cancer effects in hepatocellular carcinoma cells[J]. Int J Mol Sci, 2019,20(19):4767.
ZHOU Y, CAO S, WANG Y, et al. Berberine metabolites could induce low density lipoprotein receptor up-regulation to exert lipid-lowering effects in human hepatoma cells[J]. Fitoterapia, 2014,92:230-237.
CAO S, ZHOU Y, XU P, et al. Berberine metabolites exhibit triglyceride-lowering effects via activation of AMP-activated protein kinase in HepG2 cells[J]. J Ethnopharmacol, 2013,149(2):576-582.
黄琰菁,王琳,李赛,等.罗汉果醇通过激活AMPK信号通路调控肝细胞癌HepG2细胞的脂代谢[J].中国肿瘤生物治疗杂志,2019,26(8):876-881.
孙懿,宋莹莹,张聪,等.雷公藤红素激活AMPK信号通路抑制肝癌HepG2细胞增殖的作用研究[J].中国药师,2021,24(11):1961-1966,1982.
ZHANG J, MA X, FAN D. Ginsenoside CK ameliorates hepatic lipid accumulation via activating the LKB1/AMPK pathway in vitro and in vivo[J]. Food Funct, 2022,13(3):1153-1167.
PATTANAYAK S P, BOSE P, SUNITA P, et al. Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways[J]. Biomed Pharmacother, 2018,108:297-308.
MO Y, WU Y, LI X, et al. Osthole delays hepatocarcinogenesis in mice by suppressing Akt/FASN axis and ERK phosphorylation[J]. Eur J Pharmacol, 2020, doi: 10.1016/j.ejphar.2019.172788http://dx.doi.org/10.1016/j.ejphar.2019.172788.
PAN L, FENG F, WU J, et al. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma[J]. Food Funct, 2021,12(23):12036-12046.
成欣,韩鑫龙,谭晓梅,等.青蒿鳖甲汤对肝癌模型小鼠代谢的影响[J].世界科学技术—中医药现代化,2021,23(3):662-670.
0
Views
23
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution