浏览全部资源
扫码关注微信
扬州大学 医学院,国家中医药管理局胃癌毒邪论治重点研究室,扬州大学-扬州市肿瘤研究所, 江苏 扬州 225001
Published:05 April 2023,
Published Online:13 September 2022,
Received:04 June 2022,
扫 描 看 全 文
罗园园,冯心怡,褚泽文等.茯苓酸通过Smads调控MMP/TIMP平衡抑制肾癌细胞侵袭转移的机制[J].中国实验方剂学杂志,2023,29(07):76-83.
LUO Yuanyuan,FENG Xinyi,CHU Zewen,et al.Mechanism of Pachymic Acid in Inhibiting Invasion and Metastasis of Renal Carcinoma Cells via Regulating MMP/TIMP Balance by Smads[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(07):76-83.
罗园园,冯心怡,褚泽文等.茯苓酸通过Smads调控MMP/TIMP平衡抑制肾癌细胞侵袭转移的机制[J].中国实验方剂学杂志,2023,29(07):76-83. DOI: 10.13422/j.cnki.syfjx.202202127.
LUO Yuanyuan,FENG Xinyi,CHU Zewen,et al.Mechanism of Pachymic Acid in Inhibiting Invasion and Metastasis of Renal Carcinoma Cells via Regulating MMP/TIMP Balance by Smads[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(07):76-83. DOI: 10.13422/j.cnki.syfjx.202202127.
目的
2
探讨茯苓中的三萜类化合物茯苓酸(PA),对肾癌侵袭转移的作用及机制。
方法
2
采用细胞增殖与活性检测-8(CCK-8)试剂盒检测PA(0、20、40、80、160 μmol·L
-1
)对细胞存活率的影响,并筛选PA浓度用于后续实验。采用克隆形成实验评估PA(0、20、40、80 μmol·L
-1
)对细胞增殖的作用。细胞黏附实验用来观察PA(0、20、40、80 μmol·L
-1
)对细胞黏附能力的效果。划痕实验和Transwell侵袭实验用来检测PA(0、20、40、80 μmol·L
-1
)对细胞侵袭转移的影响。高内涵成像技术进一步动态观察和验证PA(0、20、40、80 μmol·L
-1
)对细胞运动的抑制作用。PA(0、20、40、80 μmol·L
-1
)对细胞中侵袭转移相关蛋白基质金属蛋白酶/基质金属蛋白酶组织抑制因子(MMP/TIMP)和相关通路关键蛋白Smads表达的影响通过蛋白免疫印迹法(Western blot)来检测。
结果
2
CCK-8结果显示,与空白组比较,PA组细胞存活率显著降低(
P
<
0.01),24 h时PA对ACHN细胞的半数抑制浓度(IC
50
)为70.42 μmol·L
-1
。克隆形成实验显示,与空白组比较,PA组细胞克隆群数目显著减少(
P
<
0.01)。细胞黏附实验显示,与空白组比较,PA组细胞的黏附数量显著减少(
P
<
0.01)。划痕实验表明,与空白组比较,PA组细胞的划痕愈合率降低(
P
<
0.05,
P
<
0.01)。Transwell侵袭实验显示,与空白组比较,PA组细胞的穿膜数量减少(
P
<
0.01)。高内涵成像技术表明,与空白组比较,PA组细胞累计迁移距离更短(
P
<
0.01)。Western blot结果表明,与空白组比较,PA组MMP-2、MMP-9蛋白的表达降低(
P
<
0.01),TIMP-1蛋白的表达升高(
P
<
0.01)。此外,与空白组比较,PA组Smad2、Smad3蛋白的表达降低(
P
<
0.01)。
结论
2
PA可抑制肾癌细胞的增殖、侵袭转移,其机制可能是通过Smad2/3调控MMP/TIMP的稳态平衡。
Objective
2
To investigate the effect and mechanism of pachymic acid (PA) in Poria on the invasion and metastasis of renal carcinoma cells.
Method
2
The effect of PA (0, 20, 40, 80, 160 μmol·L
-1
) on cell viability was detected by cell counting kit-8(CCK-8), and the dose of PA was selected for subsequent experiments. The effect of PA (0, 20, 40, 80 μmol·L
-1
) on cell proliferation was evaluated by colony formation assay. The effect of PA (0, 20, 40, 80 μmol·L
-1
) on cell adhesion ability was observed by cell adhesion assay. The effect of PA (0, 20, 40, and 80 μmol·L
-1
) on cell invasion and metastasis was investigated by Wound healing assay and Transwell invasion assay. The inhibitory effect of PA (0, 20, 40, 80 μmol·L
-1
) on cell motility was further observed and verified by high-content imaging technology. The effects of PA (0, 20, 40, 80 μmol·L
-1
) on the expression of matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinasas (TIMP) related to invasion and metastasis and Smads were detected by Western blot.
Result
2
CCK-8 results showed that compared with the blank group, the PA groups showed decreased cell viability(
P
<
0.01), with the half-maximal inhibitory concentration (IC
50
) of ACHN cells of 70.42 μmol·L
-1
at 24 h. Colony formation assay showed that the number of cell clonal groups in the PA groups was reduced compared with that in the blank group(
P
<
0.01). Cell adhesion assay showed that compared with the blank group, the PA groups displayed reduced cell adhesion(
P
<
0.01). Wound healing assay showed that the wound healing rate of cells in the PA groups was lower than that in the blank group (
P
<
0.05,
P
<
0.01). Transwell invasion assay showed that compared with the blank group, the number of transmembrane cells in PA groups was reduced(
P
<
0.01). High-content imaging showed that the cumulative migration distance of cells in the PA groups was shorter than that in the blank group(
P
<
0.01). The results of Western blot showed that the protein expression of MMP-2 and MMP-9 in the PA groups decreased (
P
<
0.01), and TIMP-1 protein expression increased (
P
<
0.01) compared with those in the blank group. In addition, compared with the blank group, the PA groups showed decreased protein expression of Smad2 and Smad3 (
P
<
0.01).
Conclusion
2
PA can inhibit the invasion and metastasis of renal carcinoma cells presumably through regulating the homeostasis of MMP/TIMP by Smad2/3.
茯苓酸肾癌基质金属蛋白酶/基质金属蛋白酶组织抑制因子(MMP/TIMP)Smad2/3侵袭和迁移
pachymic acidrenal carcinomamatrix metalloproteinase/tissue inhibitor of metalloproteinasas(MMP/TIMP)Smad2/3invasion and metastasis
SIEGEL R, MILLER K, JEMAL A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
CAPITANIO U, MONTORSI F. Renal cancer[J]. Lancet, 2016, 387(10021): 894-906.
AMATO R. Renal cell carcinoma: Review of novel single-agent therapeutics and combination regimens[J]. Ann Oncol, 2005, 16(1): 7-15.
LANE B, RINI B, NOVICK A, et al. Targeted molecular therapy for renal cell carcinoma[J]. Urology, 2007, 69(1): 3-10.
PADALA S, BARSOUK A, THANDRA K, et al. Epidemiology of renal cell carcinoma[J]. World J Oncol, 2020, 11(3): 79-87.
LIAN G, WANG Q, MAK T, et al. Inhibition of tumor invasion and metastasis by targeting TGF-β-Smad-MMP2 pathway with asiatic acid and Naringenin[J]. Mol Ther Oncolytics, 2021, doi:10.1016/j.omto.2021.01.006http://dx.doi.org/10.1016/j.omto.2021.01.006.
WANG S, LONG S, DENG Z, et al. Positive role of Chinese herbal medicine in cancer immune regulation[J]. Am J Chin Med, 2020, 48(7): 1577-1592.
LIU J, MAO J, WANG X, et al. Evaluation of traditional Chinese medicine herbs in oncology clinical trials[J]. Cancer J, 2019, 25(5): 367-371.
XU J, ZHANG J, WANG J. The application of traditional Chinese medicine against the tumor immune escape[J]. J Transl Int Med, 2020, 8(4): 203-204.
ZHAO H, XIE H, LI J, et al. Research progress on reversing multidrug resistance in tumors by using chinese medicine[J]. Chin J Integr Med, 2018, 24(6): 474-480.
国家药典委员会.中国药典[M].北京:中国医药科技出版社,2020:251
马艳春,范楚晨,冯天甜,等.茯苓的化学成分和药理作用研究进展[J].中医药学报,2021,49(12):108-111.
RÍOS J. Chemical constituents and pharmacological properties of Poria cocos[J]. Planta Med, 2011, 77(7): 681-691.
邓桃妹,彭代银,俞年军,等.茯苓化学成分和药理作用研究进展及质量标志物的预测分析[J].中草药,2020,51(10):2703-2717.
徐德宏,谭朝阳,郑慧,等.茯苓功效成分茯苓酸的研究进展[J].食品科学,2022,43(7):273-280.
VAN ZIJL F, KRUPITZA G, MIKULITS W. Initial steps of metastasis: Cell invasion and endothelial transmigration[J]. Mutat Res, 2011, 728(1/2): 23-34.
DABESTANI S, MARCONI L, BEX A. Metastasis therapies for renal cancer[J]. Curr Opin Urol, 2016, 26(6): 566-572.
WANG S, TANG S, LAM S, et al. Aqueous extract of Paeonia suffruticosa inhibits migration and metastasis of renal cell carcinoma cells via suppressing VEGFR-3 pathway[J]. Evid Based Complement Alternat Med, 2012, 2012(18): 409823.
XIE J, LIN W, HUANG L, et al. Bufalin suppresses the proliferation and metastasis of renal cell carcinoma by inhibiting the PI3K/Akt/mTOR signaling pathway[J]. Oncol Lett, 2018, 16(3): 3867-3873.
赵俊峰,李豪,肖耀军,等.千金子对肾癌Renca细胞周期及侵袭能力的影响[J].中国老年学杂志,2019,39(22):5599-5602.
崔鹤蓉,王睿林,郭文博,等.茯苓的化学成分、药理作用及临床应用研究进展[J].西北药学杂志,2019, 34(5): 694-700.
WEI S, YANG J. Forcing through tumor metastasis: The interplay between tissue rigidity and epithelial-mesenchymal transition[J]. Trends Cell Biol, 2016, 26(2): 111-120.
PALMER T, ASHBY W, LEWIS J, et al. Targeting tumor cell motility to prevent metastasis[J]. Adv Drug Deliv Rev, 2011, 63(8): 568-581.
BRASSART-PASCO S, BRÉZILLON S, BRASSART B, et al. Tumor microenvironment: Extracellular matrix alterations influence tumor progression[J]. Front Oncol, 2020, doi:10.3389/fonc.2020.00397http://dx.doi.org/10.3389/fonc.2020.00397.
CONLON G, MURRAY G. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis[J]. J Pathol, 2019, 247(5): 629-640.
JIANG H, LI H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and Meta-analysis[J]. BMC Cancer, 2021, 21(1): 149.
LIU H, ZENG Z, WANG S, et al. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9[J]. Cancer Biol Ther, 2017, 18(12): 990-999.
ECKFELD C, HÁUßLER D, SCHOEPS B, et al. Functional disparities within the TIMP family in cancer: Hints from molecular divergence[J]. Cancer Metastasis Rev, 2019, 38(3): 469-481.
ARPINO V, BROCK M, GILL S. The role of TIMPs in regulation of extracellular matrix proteolysis[J]. Matrix Biol, 2015, doi:10.1016/j.matbio. 2015.03.005http://dx.doi.org/10.1016/j.matbio.2015.03.005.
PEARSON J, ZURITA F, TOMÁS-GALLARDO L, et al. ECM-Regulator timp is required for stem cell niche organization and cyst production in the drosophila ovary[J]. PLoS Genet, 2016, 12(1): e1005763.
ALBINI A, MELCHIORI A, SANTI L, et al. Tumor cell invasion inhibited by TIMP-2[J]. JNCI J Natl Cancer Inst, 1991, 83(11): 775-779.
KHOKHA R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1[J]. J Natl Cancer Inst, 1994, 86(4): 299-304.
RIGG A, LEMOINE N. Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo[J]. Cancer Gene Ther, 2001, 8(11): 869-878.
JIANG Y, GOLDBERG I, SHI Y. Complex roles of tissue inhibitors of metalloproteinases in cancer[J]. Oncogene, 2002, 21(14): 2245-2252.
BAKER A, GEORGE S, ZALTSMAN A, et al. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3[J]. Br J Cancer, 1999, 79(9): 1347-1355.
LIN S, GAO Z, LIN L, et al. Treponema pallidum enhances human monocyte migration and invasion by dysregulating the MMP/TIMP balance[J]. Int Immunopharmacol, 2019, doi:10.1016/j.intimp.2019.105744http://dx.doi.org/10.1016/j.intimp.2019.105744.
WANG Z, HUANG C, LI Z, et al. Chrysanthemum indicum ethanolic extract inhibits invasion of hepatocellular carcinoma via regulation of MMP/TIMP balance as therapeutic target[J]. Oncol Rep, 2010, 23(2): 413-421.
KALININA N. Smad expression in human atherosclerotic lesions: Evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions[J]. Arterioscler Thromb Vasc Biol, 2004, 24(8):1391-1396.
LI X, GUO L, YANG X, et al. TGF-β1-induced connexin43 promotes scar formation via the ERK/MMP-1/collagen Ⅲ pathway[J]. J Oral Rehabil, 2020, 47(Suppl 1): 99-106.
ZHANG L, ZHU Z, YAN H, et al. Creatine promotes cancer metastasis through activation of Smad2/3[J]. Cell Metab, 2021, 33(6): 1111-1123.e4.
HORITANI S, FUKUI T, TANIMURA Y, et al. Specific Smad2/3 linker phosphorylation indicates esophageal non-neoplastic and neoplastic stem-like cells and neoplastic development[J]. Dig Dis Sci, 2021, 66(6): 1862-1874.
SUZUKI R, FUKUI T, KISHIMOTO M, et al. Smad2/3 linker phosphorylation is a possible marker of cancer stem cells and correlates with carcinogenesis in a mouse model of colitis-associated colorectal cancer[J]. J Crohns Colitis, 2015, 9(7): 565-574.
MO N, LI Z, LI J, et al. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells[J]. Asian Pac J Cancer Prev, 2012, 13(11): 5709-5714.
0
Views
24
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution