浏览全部资源
扫码关注微信
1.湖北中医药大学 中医临床学院,武汉 430065
2.胚胎干细胞研究湖北省重点实验室,湖北 十堰 442099
3.太和医院 湖北医药学院 附属医院,湖北 十堰 442099
4.太和医院 湖北中医药大学 研究生培养基地,湖北 十堰 442099
Published:20 July 2023,
Published Online:27 September 2022,
Received:29 May 2022,
扫 描 看 全 文
陈卓,陆露,方兴刚等.通过GSDMs介导细胞焦亡的天然药物成分在抗肿瘤治疗中的研究进展[J].中国实验方剂学杂志,2023,29(14):226-238.
CHEN Zhuo,LU Lu,FANG Xinggang,et al.Natural Medicinal Components Mediating Pyroptosis by GSDMs in Anti-tumor Therapy: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):226-238.
陈卓,陆露,方兴刚等.通过GSDMs介导细胞焦亡的天然药物成分在抗肿瘤治疗中的研究进展[J].中国实验方剂学杂志,2023,29(14):226-238. DOI: 10.13422/j.cnki.syfjx.202202223.
CHEN Zhuo,LU Lu,FANG Xinggang,et al.Natural Medicinal Components Mediating Pyroptosis by GSDMs in Anti-tumor Therapy: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):226-238. DOI: 10.13422/j.cnki.syfjx.202202223.
近年来发现除凋亡、坏死外的一种非典型新型细胞死亡方式——细胞焦亡,其生物学特征为依赖于胱天蛋白酶(Caspases)家族蛋白切割焦孔素家族(GSDMs)蛋白,使活化的GSDMs蛋白在质膜上作用形成穿孔,导致细胞肿胀裂解,引发炎症及免疫反应。目前,有4种不同的信号途径可诱导细胞焦亡,包括经典和非经典炎性小体通路、凋亡相关Caspases介导的通路和基于颗粒酶的焦亡通路。在这些信号通路中,GSDMs蛋白是最终的细胞焦亡执行者。细胞焦亡与肿瘤细胞死亡及正常组织炎性损伤密切相关,近年的研究发现,适度的细胞焦亡会导致肿瘤细胞死亡,发挥抗肿瘤作用,同时刺激肿瘤免疫微环境;而细胞焦亡不当激活又可促进肿瘤发展。药物抗肿瘤治疗中,如肿瘤免疫治疗、化疗、靶向治疗等手段发挥了较好的抗肿瘤作用,但仍存在耐药、复发、损伤正常组织等不足,而最新的研究表明多种天然药物成分具有通过介导焦亡途径的抗肿瘤作用及辅助抗肿瘤作用,且有多靶点和多通路的特点,这为抗肿瘤治疗的研究提供了新的思路和方法。笔者对细胞焦亡的分子机制、焦亡在肿瘤及肿瘤免疫微环境中的调控作用进行综述,同时重点对调控细胞焦亡的相关天然药物成分在抗肿瘤治疗中的新近研究进行总结,以期为基于细胞焦亡的抗肿瘤治疗与研究提供思路。
Pyroptosis, an atypical new cell death mode other than apoptosis and necrosis, has been discovered in recent years. Pyroptosis depends on the cleavage of gasdermins (GSDMs) by Caspases. The activated GSDMs act on the plasma membrane to form a perforation, which results in cell lysis and triggers inflammation and immune response. Pyroptosis can be induced by four distinct signaling pathways, including canonical and non-canonical inflammasome pathways, apoptosis-associated Caspases-mediated pathway, and granzyme pathway. In these signaling pathways, GSDMs are the executors of pyroptosis. Pyroptosis is associated with the death of tumor cells and the inflammatory damage of normal tissues. Recent studies have demonstrated that moderate pyroptosis can lead to tumor cell death to exert an anti-tumor effect, and meanwhile stimulate the tumor immune microenvironment, while it can promote tumor development. Despite the good performance, drug-based anti-tumor therapies such as tumor immunotherapy, chemotherapy, and targeted therapy have some shortcomings such as drug resistance, recurrence, and damage to normal tissues. The latest research shows that a variety of natural compounds have anti-tumor effects in the auxiliary treatment of tumors by mediating the pyroptosis pathways in a multi-target and multi-pathway manner, which provide new ideas for the study of anti-tumor therapy. We reviewed the molecular mechanism of pyroptosis and the regulatory role of pyroptosis in tumors and tumor immune microenvironment, and summarized the recent research progress in the natural medicinal components regulating pyroptosis in anti-tumor therapy, with a view to providing ideas for the research on the anti-tumor therapy based on pyroptosis.
细胞焦亡焦孔素家族(GSDMs)焦孔素E(GSDME)焦孔素D(GSDMD)天然药物抗肿瘤治疗进展
pyroptosisgasdermins (GSDMs)gasdermin E (GSDME)gasdermin D (GSDMD)natural medicineanti-tumor therapyprogress
COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death [J]. Trends Microbiol, 2001, 9(3): 113-114.
TSUCHIYA K. Switching from apoptosis to pyroptosis: Gasdermin-elicited inflammation and antitumor immunity [J]. Int J Mol Sci, 2021, 22(1): 426.
ZHANG Z, ZHANG Y, LIEBERMAN J. Lighting a fire: Can we harness pyroptosis to ignite antitumor immunity? [J]. Cancer Immunol Res, 2021, 9(1): 2-7.
QIU S, LIU J, XING F. 'Hints' in the killer protein gasdermin D: Unveiling the secrets of gasdermins driving cell death [J]. Cell Death Differ, 2017, 24(4): 588-596.
DE VASCONCELOS N M, VAN OPDENBOSCH N, VAN GORP H, et al. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture [J]. Cell Death Differ, 2019, 26(1): 146-161.
LEE B L, MIRRASHIDI K M, STOWE I B, et al. ASC-and Caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages [J]. Sci Rep, 2018, 8(1): 1-12.
KHANOVA E, WU R, WANG W, et al. Pyroptosis by Caspase-11/4‐gasdermin‐D pathway in alcoholic hepatitis in mice and patients [J]. Hepatology, 2018, 67(5): 1737-1753.
颜亮, 李陈广, 徐丽慧, 等. 黄芩苷对 NLRP3 炎症小体活化和细胞焦亡的抑制作用及其机制研究 [J]. 免疫学杂志, 2018, 34(2): 93-100.
WANG W, MAO S, YU H, et al. Pinellia pedatisecta lectin exerts a proinflammatory activity correlated with ROS-MAPKs/NF-κB pathways and the NLRP3 inflammasome in RAW264. 7 cells accompanied by cell pyroptosis [J]. Int Immunopharmacol, 2019, 66(1) : 1-12.
YUAN L, ZHU Y, HUANG S, et al. NF-κB/ROS and ERK pathways regulate NLRP3 inflammasome activation in Listeria monocytogenes infected BV2 microglia cells [J]. J Microbiol, 2021, 59(8): 771-781.
CHU Q, JIANG Y, ZHANG W, et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma [J]. Oncotarget, 2016,7(51):84658-84665.
HE T, XU X, ZHANG X Y, et al. Effectiveness of Huai Qi Huang granules on juvenile collagen-induced arthritis and its influence on pyroptosis pathway in synovial tissue [J]. Curr Med Sci, 2019,39(5):784-793.
CHEN X, HE W-T, HU L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis [J]. Cell Res, 2016, 26(9): 1007-1020.
ZYCHLINSKY A, PREVOST M C, SANSONETTI P J. Shigella flexneri induces apoptosis in infected macrophages [J]. Nature, 1992, 358(6382): 167-169.
BERGSBAKEN T, FINK S L, COOKSON B T. Pyroptosis: Host cell death and inflammation [J]. Nat Rev Microbiol, 2009, 7(2): 99-109.
KOVACS S B, MIAO E A. Gasdermins: Effectors of pyroptosis [J]. Trends Cell Biol, 2017, 27(9): 673-684.
WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through Caspase-3 cleavage of a gasdermin [J]. Nature, 2017, 547(7661): 99-103.
ROGERS C, FERNANDES-ALNEMRI T, MAYES L, et al. Cleavage of DFNA5 by Caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death [J]. Nat Commun, 2017, 8(1): 1-14.
SOLINAS G, MARCHESI F, GARLANDA C, et al. Inflammation-mediated promotion of invasion and metastasis [J]. Cancer Metastasis Rev, 2010, 29(2): 243-248.
THI H T H, HONG S. Inflammasome as a therapeutic target for cancer prevention and treatment [J]. J Cancer Prev, 2017,22(2):62-73.
WU J, FERNANDES-ALNEMRI T, ALNEMRI E S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in Caspase-1 activation by Listeria monocytogenes [J]. J Clin Immunol, 2010, 30(5): 693-702.
XU H, YANG J, GAO W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome [J]. Nature, 2014, 513(7517): 237-241.
MITCHELL P S, SANDSTROM A, VANCE R E. The NLRP1 inflammasome: New mechanistic insights and unresolved mysteries [J]. Curr Opin Immunol, 2019, doi:10.1016/j.coi.2019.04.015http://dx.doi.org/10.1016/j.coi.2019.04.015.
ELLIOTT E I, SUTTERWALA F S. Initiation and perpetuation of NLRP 3 inflammasome activation and assembly [J]. Immunol Rev, 2015, 265(1): 35-52.
ZHAO Y, YANG J, SHI J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type Ⅲ secretion apparatus [J]. Nature, 2011, 477(7366): 596-600.
HORNUNG V, ABLASSER A, CHARREL-DENNIS M, et al. AIM2 recognizes cytosolic dsDNA and forms a Caspase-1-activating inflammasome with ASC [J]. Nature, 2009, 458(7237): 514-518.
SOLLBERGER G, STRITTMATTER G E, GARSTKIEWICZ M, et al. Caspase-1: The inflammasome and beyond [J]. Innate Immun, 2014, 20(2): 115-125.
SBORGI L, RÜHL S, MULVIHILL E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death [J]. EMBO J, 2016, 35(16): 1766-1778.
MARTINON F, TSCHOPP J. Inflammatory Caspases and inflammasomes: Master switches of inflammation [J]. Cell Death Differ, 2007, 14(1): 10-22.
FAUCHEU C, BLANCHET A M, COLLARD‐DUTILLEUL V, et al. Identification of a cysteine protease closely related to interleukin‐1β‐converting enzyme [J]. Eur J Biochem, 1996, 236(1): 207-213.
LIU X, ZHANG Z, RUAN J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores [J]. Nature, 2016, 535(7610): 153-158.
MIAO E A, LEAF I A, TREUTING P M, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria [J]. Nat Immunol, 2010, 11(12): 1136-1142.
KAYAGAKI N, STOWE I B, LEE B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling [J]. Nature, 2015, 526(7575): 666-671.
SHI J, GAO W, SHAO F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death [J]. Trends Microbiol, 2017, 42(4): 245-254.
SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory Caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665.
RüHL S, BROZ P. Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K+ efflux [J]. Eur J Immunol, 2015, 45(10): 2927-2936.
DING J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family [J]. Nature, 2016, 535(7610): 111-116.
LI Q, CHEN L, DONG Z, et al. Piperlongumine analogue L50377 induces pyroptosis via ROS mediated NF-κB suppression in non-small-cell lung cancer [J]. Chem Biol Interact,2019, doi:10.1016/j.cbi.2019.108820http://dx.doi.org/10.1016/j.cbi.2019.108820
HU J, DONG Y, DING L, et al. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment [J]. Signal Transduct Target Ther, 2019, 4(1): 1-7.
KONG Y, FENG Z, CHEN A, et al. The natural flavonoid galangin elicits apoptosis, pyroptosis, and autophagy in glioblastoma [J]. Front Oncol, 2019, doi:10.3389/fonc.2019.00942http://dx.doi.org/10.3389/fonc.2019.00942
张依格,高军,王建榜.GSDME介导的细胞焦亡在肿瘤发生发展中的作用及其临床意义[J].中国肿瘤生物治疗杂志,2021,28(3):288-293.
YU J, LI S, QI J, et al. Cleavage of GSDME by Caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells [J]. Cell Death Dis, 2019, 10(3): 1-20.
SARHAN J, LIU B C, MUENDLEIN H I, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection [J]. Proc Natl Acad Sci U S A, 2018, 115(46): E10888-E10897.
ORNING P, WENG D, STARHEIM K, et al. Pathogen blockade of TAK1 triggers Caspase-8-dependent cleavage of gasdermin D and cell death [J]. Science, 2018, 362(6418): 1064-1069.
ZHENG Z, DENG W, BAI Y, et al. The lysosomal Rag-Ragulator complex licenses RIPK1-and Caspase-8-mediated pyroptosis by Yersinia [J]. Science, 2021, 372(6549): eabg0269.
HOU J, ZHAO R, XIA W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis [J]. Nat Cell Biol, 2020, 22(10): 1264-1275.
CHAO K L, KULAKOVA L, HERZBERG O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein [J]. Proc Natl Acad Sci U S A, 2017, 114(7): E1128-E1137.
ZHANG Z, ZHANG Y, XIA S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity [J]. Nature, 2020, 579(7799): 415-420.
JOECKEL L T, BIRD P I. Are all granzymes cytotoxic in vivo? [J]. Biol Chem, 2014, 395(2): 181-202.
ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells [J]. Science, 2020, 368(6494): eaaz7548.
GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018 [J]. Cell Death Differ, 2018, 25(3): 486-541.
NAGATA S, TANAKA M. Programmed cell death and the immune system [J]. Nat Rev Immunol, 2017, 17(5): 333-340.
ARANDJELOVIC S, RAVICHANDRAN K S. Phagocytosis of apoptotic cells in homeostasis [J]. Nat Immunol, 2015, 16(9): 907-917.
JIANG M, QI L, LI L, et al. The Caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer [J]. Cell Death Discov, 2020, 6(1): 1-11.
GOZUACIK D, KIMCHI A. Autophagy and cell death [J]. Curr Top Dev Biol, 2007, doi: 10.1016/S0070-2153(06)78006-1http://dx.doi.org/10.1016/S0070-2153(06)78006-1.
何曼, 陈莉, 曾沙, 等. 中药调控肿瘤细胞自噬的研究进展 [J]. 中草药, 2021, 52(10): 3142-3150.
MENZIES F M, FLEMING A, CARICASOLE A, et al. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities [J]. Neuron, 2017, 93(5): 1015-1034.
DU T, GAO J, LI P, et al. Pyroptosis, metabolism, and tumor immune microenvironment [J]. Clin Transl Med, 2021, doi:10.1002/ctm2.492http://dx.doi.org/10.1002/ctm2.492
CHENG H, MA K, ZHANG L, et al. The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells [J]. Cancer Lett, 2021, doi:10.1016/j.canlet.2021.02.013http://dx.doi.org/10.1016/j.canlet.2021.02.013.
DE SCHUTTER E, CROES L, IBRAHIM J, et al. GSDME and its role in cancer: From behind the scenes to the front of the stage [J]. Int J Cancer, 2021, 148(12): 2872-2883.
CHENG H, MA K, ZHANG L, et al. The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells [J]. Cancer Lett, 2021, 506 (2021): 55-66.
DUAN Q, ZHANG H, ZHENG J, et al. Turning cold into hot: firing up the tumor microenvironment [J]. Trends Cancer, 2020, 6(7): 605-618.
ZHANG C C, LI C G, WANG Y F, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via Caspase-3/GSDME activation [J]. Apoptosis, 2019, 24(3): 312-325.
DYCK L, MILLS K H. Immune checkpoints and their inhibition in cancer and infectious diseases [J]. Eur J Immunol, 2017, 47(5): 765-779.
WANG Q, WANG Y, DING J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis [J]. Nature, 2020, 579(7799): 421-426.
JIANG Z, YAO L, MA H, et al. miRNA-214 inhibits cellular proliferation and migration in glioma cells targeting Caspase 1 involved in pyroptosis [J]. Oncol Res, 2017, 25(6):1009-1019.
WU M, WANG Y, YANG D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma [J]. E Bio Medicine, 2019, doi:10.1016/j.ebiom.2019.02.012http://dx.doi.org/10.1016/j.ebiom.2019.02.012
YU X, HE S. GSDME as an executioner of chemotherapy-induced cell death [J]. Sci China Life Sci, 2017, 60(11): 1291-1294.
ZHANG X, ZHANG P, AN L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis [J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413.
ZHANG Y, YANG H, SUN M, et al. Alpinumisoflavone suppresses hepatocellular carcinoma cell growth and metastasis via NLRP3 inflammasome-mediated pyroptosis [J]. Pharmacol Rep, 2020, 72(5): 1370-1382.
CHEN S, MA J, YANG L, et al. Anti-glioblastoma activity of kaempferol via programmed cell death induction: Involvement of autophagy and pyroptosis [J]. Front Bioeng Biotechnol, 2020, doi:10.3389/fbioe.2020.614419http://dx.doi.org/10.3389/fbioe.2020.614419
HU Z, LAI Y, MA C, et al. Cordyceps militaris extract induces apoptosis and pyroptosis via Caspase‐3/PARP/GSDME pathways in A549 cell line [J]. Food Sci Nutr, 2021,10(1):21-38.
章荣俊. 蜜橘黄素对卵巢癌的抗肿瘤效应及作用机制研究 [D].广州:南方医科大学, 2021.
CHEN T, WANG Z, ZHONG J, et al. Secoisolariciresinol diglucoside induces pyroptosis by activating Caspase‐1 to cleave GSDMD in colorectal cancer cells [J]. Drug Dev Res, 2022,83(5):1152-1166.
JIANG M, WU Y, QI L, et al. Dihydroartemisinin mediating PKM2-Caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma [J]. Chem Biol Interact, 2021, doi:10.1016/j.cbi.2021.109704http://dx.doi.org/10.1016/j.cbi.2021.109704.
LIANG W F, GONG Y X, LI H-F, et al. Curcumin activates ROS signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells [J]. In Vivo, 2021, 35(1): 249-257.
YUE E, TUGUZBAEVA G, CHEN X, et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma [J]. Phytomedicine, 2019, doi:10.1016/j.phymed.2018.09.223http://dx.doi.org/10.1016/j.phymed.2018.09.223
KAI J, YANG X, WANG Z, et al. Oroxylin a promotes PGC-1α/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease [J]. Free Radic Biol Med,2020, doi:10.1016/j.freeradbiomed.2020.03.031http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.031
HUA S, MA M, FEI X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis [J]. Int Immunopharmacol, 2019, doi:10.1016/j.intimp.2019.01.002http://dx.doi.org/10.1016/j.intimp.2019.01.002
SANGILD P T, SHEN R L, PONTOPPIDAN P, et al. Animal models of chemotherapy-induced mucositis: Translational relevance and challenges [J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(2): G231-G246.
张瑞芳,李雅琦,张广龙,等.从细胞焦亡角度探讨6-姜酚、6-姜烯酚对化疗性小肠上皮细胞损伤的保护作用机制[J].中药药理与临床,2021,37(6):26-31.
段昊楠. 姜黄素通过自噬-CTSB-炎症小体信号通路诱导人乳腺癌细胞 (MCF-7) 焦亡的研究 [D].大连:大连医科大学, 2021.
桂颖, 雷欢, 邓琴, 等. 姜黄素通过TLR4/NF-кB/NLRP3信号通路减轻LPS/D-GalN诱导的小鼠急性肝损伤 [J]. 武汉轻工大学学报, 2022, 41(2): 26-32,7.
NOEL P, VON HOFF D D, SALUJA A K, et al. Triptolide and its derivatives as cancer therapies [J]. Trends Pharmacol Sci, 2019, 40(5): 327-341.
CAI J, YI M, TAN Y, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-Ⅱ [J]. J Exp Clin Cancer Res, 2021, 40(1): 1-17.
吴薇,刘不悔,万毅刚,等.雷公藤甲素抑制NLRP3炎症小体活化改善高糖诱导的足细胞上皮-间充质转分化[J].中国中药杂志,2019,44(24):5457-5464.
周慧,曲颂扬,田立东.雷公藤甲素对IgA肾病大鼠的肾保护作用及对NLRP3炎症小体的影响[J].蚌埠医学院学报,2020,45(12):1593-1597,1601.
XIAO Y, ZHANG T, MA X, et al. Microenvironment‐responsive prodrug‐induced pyroptosis boosts cancer immunotherapy [J]. Adv Sci (Weinh), 2021, 8(24):e2101840.
杨梓萌,程文静,余祥.新型纳米递送系统在药物诱导肿瘤细胞焦亡中的应用[J].中国肿瘤生物治疗杂志,2022,29(5):391-398.
陈曦,李靖,朱玲,等.积雪草酸联合奥沙利铂对结肠癌HCT116细胞凋亡、自噬和焦亡的调控作用研究[J].中国医院药学杂志,2022,42(3):274-280.
孙光强,薛玉叶,陆云阳,等.重楼皂苷H诱导耐替莫唑胺胶质瘤SHG44R细胞凋亡和焦亡的作用研究[J].中南药学,2022,20(5):973-978.
程子昱. 麦冬皂苷 B 通过 Caspase-1/GSDMD 通路抑制耐药非小细胞肺癌的作用及其机制研究 [D].南京:南京中医药大学, 2020.
董婧,王耀,黄小侠,等.细胞焦亡调控肿瘤免疫微环境的分子机制研究进展[J].中国农业大学学报,2022,27(6):162-171.
0
Views
20
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution