浏览全部资源
扫码关注微信
广西中医药大学 药学院,中药固体制剂制造技术国家工程研究中心华南分中心,南宁 530299
Received:25 March 2022,
Published Online:29 April 2022,
Published:05 February 2023
移动端阅览
邹灵辉,杨旭,李佶朗等.功能化脂质体的体内命运:应用与挑战[J].中国实验方剂学杂志,2023,29(03):244-253.
ZOU Linghui,YANG Xu,LI Jilang,et al.In vivo Fate of Functionalized Liposomes:Applications and Challenges[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(03):244-253.
邹灵辉,杨旭,李佶朗等.功能化脂质体的体内命运:应用与挑战[J].中国实验方剂学杂志,2023,29(03):244-253. DOI: 10.13422/j.cnki.syfjx.20220455.
ZOU Linghui,YANG Xu,LI Jilang,et al.In vivo Fate of Functionalized Liposomes:Applications and Challenges[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(03):244-253. DOI: 10.13422/j.cnki.syfjx.20220455.
功能化脂质体可以改善药物的体内过程进而实现药物的高效递送,主要表现为增强药物吸收、改变药物分布使其富集于靶标处、降低药物消除以延长作用时间等特点,是目前纳米药物研究的热点方向之一,具有广阔的应用前景。查询国家药品监督管理局(NMPA)、美国食品药品监督管理局(FDA)及欧洲药品管理局(EMA)公布的药品信息发现,目前上市的脂质体药物较少,且国内品种以仿制药为主,除聚乙二醇化脂质体外,没有其他功能化脂质体获批上市,说明相对于发表的科研论文及专利,功能化脂质体的临床转化率处于较低水平。基于此,笔者拟查阅近年来国内外功能化脂质体的相关研究案例,梳理功能化脂质体的概念和类别,围绕体内命运探讨其在药物递送中的特点及应用优势,分析其临床转化率低的主要原因有初期研究缺乏临床思维、功能性材料的有效性和安全性问题、体内外评价方法欠佳及放大生产困难等,并提出加强各学科间交叉渗透以提高研究初期实验设计的合理性、着重考察功能性材料修饰密度及材料间相互作用、开发更为准确安全的脂质体体内外示踪技术、综合评价功能化脂质体递药性能、以低成本和简便性为导向的处方组成及制备工艺优化等可能的应对策略,以期为功能化脂质体及其他载体类纳米药物的研发提供参考。
Functionalized liposomes can improve the
in vivo
process of drugs to achieve high-efficiency delivery by enhancing drug absorption, changing drug distribution and reducing the elimination, which is one of the hotspots in nanomedicine research with broad application prospects. However, the drug information published by official websites of National Medical Products Administration (NMPA), the United States Food and Drug Administration (FDA), and the European Medicines Agency (EMA) shows that there are few liposomal products on the market, and the domestic varieties are mainly generic drugs. Excepting for polyethylene glycolized (PEGylated) liposomes, no other functionalized liposomes have been approved for marketing, which indicates that the clinical translation of functionalized liposomes remains at a low level. Therefore, the relevant reports of functionalized liposomes in recent years were reviewed in this paper, their application advantages and main challenges in preparation research and development were discussed based on the
in vivo
process, and their low clinical translation mainly because of the insufficient clinical thinking, safety and efficacy of functional materials, inaccurate
in vitro
and
in vivo
analysis methods and difficulty in scaling up production. Meanwhile, the possible strategies such as introducing the concept of clinical multi-function to improve clinical acuity, focusing on examining the modification density of functional materials and the interaction between the modified materials, evaluating the drug delivery performance of functionalized liposomes from multiple perspectives and scenarios, and conducting cost and convenience-oriented formulation composition and preparation process optimization were proposed in order to provide a reference for the development of functionalized liposomes and other carrier-based nanomedicines.
李翀 , 吴俊伟 . 智能响应药物递送技术的开发与前沿进展 [J]. 药学进展 , 2021 , 45 ( 5 ): 321 - 324 .
HE Y Q , XU Z Q , QIU Z W , et al . Evaluation of the efficacy and performance of a new nano-drug carrier in the treatment of recurrent oral ulcerper [J]. J Nanosci Nanotechnol , 2021 , 21 ( 2 ): 1107 - 1117 .
付淑军 , 黄芳华 , 顾景凯 , 等 . 纳米药物非临床药代动力学的研究策略及关注要点 [J]. 中国临床药理学与治疗学 , 2021 , 26 ( 8 ): 842 - 850 .
BANGHAM A D , STANDISH M M , WATKINS J C . Diffusion of univalent ions across the lamellae of swollen phospholipids [J]. J Mol Biol , 1965 , 13 ( 1 ): 238 - 252 .
TORCHILIN V P . Recent advances with liposomes as pharmaceutical carriers [J]. Nat Rev Drug Discov , 2005 , 4 ( 2 ): 145 - 160 .
王凤玉 , 张保献 , 张广平 , 等 . 盐酸常山碱的理化性质及其脂质体包封率的测定方法考察 [J]. 中国实验方剂学杂志 , 2019 , 25 ( 1 ): 177 - 182 .
ZHANG J , TANG H , LIU Z F , et al . Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy [J]. Int J Nanomed , 2017 , 12 : 8483 - 8493 .
PAWAR V K , SINGH Y , MEHER J G , et al . Engineered nanocrystal technology: In vivo fate,targeting and applications in drug delivery [J]. J Control Release , 2014 , 183 : 51 - 66 .
SERCOMBE L , VEERATI T , MOHEIMANI F , et al . Advances and challenges of liposome assisted drug delivery [J]. Front Pharmacol , 2015 , 6 : 286 .
LIM S B , BANERJEE A , ÖNYÜKSEL H . Improvement of drug safety by the use of lipid-based nanocarriers [J]. J Control Release , 2012 , 163 ( 1 ): 34 - 45 .
ANTONIETTI M , FORSTER S . Vesicles and liposomes:A self-assembly principle beyond lipids [J]. Adv Mater , 2003 , 15 ( 16 ): 1323 - 1333 .
CADDEO C , PUCCI L , GABRIELE M , et al . Stability,biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol [J]. Int J Pharm , 2018 , 538 ( 1/2 ): 40 - 47 .
BELFIORE L , SAUNDERS D N , RANSON M , et al . Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy:Challenges and opportunities [J]. J Control Release , 2018 , 277 : 1 - 13 .
IMMORDINO M L , DOSIO F , CATTEL L . Stealth liposomes:Review of the basic science,rationale,and clinical applications,existing and potential [J]. Int J Nanomedicine , 2006 , 1 ( 3 ): 297 - 315 .
FORSSEN E , WILLIS M . Ligand-targeted liposomes [J]. Adv Drug Delivery Rev , 1998 , 29 ( 3 ): 249 - 271 .
安学勤 . 刺激响应脂质体及其在控制释药中的应用 [J]. 中国科学:化学 , 2015 , 45 ( 4 ): 340 - 349 .
LI M Y , DU C Y , GUO N , et al . Composition design and medical application of liposomes [J]. Eur J Med Chem , 2019 , 164 : 640 - 653 .
DAEIHAMED M , DADASHZADEH S , HAERI A , et al . Potential of liposomes for enhancement of oral drug absorption [J]. Curr Drug Deliv , 2017 , 14 ( 2 ): 289 - 303 .
ZHAO Z M , UKIDVE A , KRISHNAN V , et al . Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers [J]. Adv Drug Delivery Rev , 2019 , 143 : 3 - 21 .
LIN J H , LU A Y H . Role of pharmacokinetics and metabolism in drug discovery and development [J]. Pharmacol Rev , 1997 , 49 ( 4 ): 403 - 449 .
GIULIMONDI F , VULPIS E , DIGIACOMO L , et al . Opsonin-deficient nucleoproteic corona endows unPEGylated liposomes with stealth properties in vivo [J]. ACS Nano , 2022 , 16 ( 2 ): 2088 - 2100 .
CULLIS P R , CHONN A , SEMPLE S C . Interactions of liposomes and lipid-based carrier systems with blood proteins:Relation to clearance behaviour in vivo [J]. Adv Drug Delivery Rev , 1998 , 32 ( 1/2 ): 3 - 17 .
DING N , WANG Y , WANG X , et al . Improving plasma stability and antitumor effect of gemcitabine via PEGylated liposome prepared by active drug loading [J]. J Drug Delivery Sci Technol , 2020 , 57 : 101538 .
IBARAKI H , TAKEDA A , ARIMA N , et al . In vivo fluorescence imaging of passive inflammation site accumulation of liposomes via intravenous administration focused on their surface charge and PEG modification [J]. Pharmaceutics , 2021 , 13 ( 1 ): 104 .
TANG X Z , SUN J , GE T , et al . PEGylated liposomes as delivery systems for gambogenic acid:Characterization and in vitro / in vivo evaluation [J]. Colloids Surf B Biointerfaces , 2018 , 172 : 26 - 36 .
GHAFERI M , ASADOLLAHZADEH M J , AKBARZADEH A , et al . Enhanced efficacy of PEGylated liposomal cisplatin: In vitro and in vivo evaluation [J]. Int J Mol Sci , 2020 , 21 ( 2 ): 559 .
KULKARNI S B , BETAGERI G V , SINGH M . Factors affecting microencapsulation of drugs in liposomes [J]. J Microencapsul , 1995 , 12 ( 3 ): 229 - 246 .
NAG O K , AWASTHI V . Surface engineering of liposomes for stealth behavior [J]. Pharmaceutics , 2013 , 5 ( 4 ): 542 - 569 .
REN H W , HE Y W , LIANG J M , et al . Role of liposome size,surface charge,and PEGylation on rheumatoid arthritis targeting therapy [J]. ACS Appl Mater Interfaces , 2019 , 11 ( 22 ): 20304 - 20315 .
SUDIMACK J , LEE R J . Targeted drug delivery via the folate receptor [J]. Adv Drug Delivery Rev , 2000 , 41 ( 2 ): 147 - 162 .
朱坤 , 杨中澜 , 张晓青 , 等 . 核酸适配体介导脂质体靶向递送抗肿瘤药物的研究现状 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 20 ): 206 - 212 .
CARACCIOLO G . Liposome-protein corona in a physiological environment:Challenges and opportunities for targeted delivery of nanomedicines [J]. Nanomedicine , 2015 , 11 ( 3 ): 543 - 557 .
GAO J , CHEN H W , SONG H , et al . Antibody-targeted immunoliposomes for cancer treatment [J]. Mini Rev Med Chem , 2013 , 13 ( 14 ): 2026 - 2035 .
HATAKEYAMA H , AKITA H , ISHIDA E , et al . Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes [J]. Int J Pharm , 2007 , 342 ( 1/2 ): 194 - 200 .
刘腾飞 , 杨代凤 , 邓金花 , 等 . 核酸适体的筛选制备及分析应用 [J]. 生物技术通报 , 2013 , 29 ( 4 ): 39 - 48 .
FAMULOK M , HARTIG J S , MAYER G . Functional aptamers and aptazymes in biotechnology,diagnostics,and therapy [J]. Chem Rev , 2007 , 107 ( 9 ): 3715 - 3743 .
ARA M N , MATSUDA T , HYODO M , et al . Construction of an aptamer modified liposomal system targeted to tumor endothelial cells [J]. Biol Pharm Bull , 2014 , 37 ( 11 ): 1742 - 1749 .
SUN Y , KANG C , LIU F , et al . RGD peptide-based target drug delivery of doxorubicin nanomedicine [J]. Drug Dev Res , 2017 , 78 ( 6 ): 283 - 291 .
STARZEC A , LADAM P , VASSY R , et al . Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF165 binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex [J]. Peptides , 2007 , 28 ( 12 ): 2397 - 2402 .
CAO J Y , WANG R , GAO N , et al . A7RC peptide modified paclitaxel liposomes dually target breast cancer [J]. Biomater Sci , 2015 , 3 ( 12 ): 1545 - 1554 .
CHOI Y , KIM J , CHAE J , et al . Surface glycan targeting for cancer nano-immunotherapy [J]. J Control Release , 2022 , 342 : 321 - 336 .
GUAN C , ZHAO Y Y , HOU Y T , et al . Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells [J]. Talanta , 2018 , 182 : 314 - 323 .
KHAN A A , ALLEMAILEM K S , ALMATROODI S A , et al . Recent strategies towards the surface modification of liposomes:An innovative approach for different clinical applications [J]. 3 Biotech , 2020 , 10 ( 4 ): 163 .
PALEOS C M , TZIVELEKA L A , SIDERATOU Z , et al . Gene delivery using functional dendritic polymers [J]. Expert Opin Drug Delivery , 2009 , 6 ( 1 ): 27 - 38 .
BAYYURT B , TINCER G , ALMACIOGLU K , et al . Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development [J]. J Control Release , 2017 , 247 : 134 - 144 .
ZHANG Y , ZHAI M F , CHEN Z J , et al . Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma [J]. Drug Delivery , 2017 , 24 ( 1 ): 1045 - 1055 .
PARK J H , CHO H J , YOON H Y , et al . Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery [J]. J Control Release , 2014 , 174 : 98 - 108 .
KONO K , TAKASHIMA M , YUBA E , et al . Multifunctional liposomes having target specificity,temperature-triggered release,and near-infrared fluorescence imaging for tumor-specific chemotherapy [J]. J Control Release , 2015 , 216 : 69 - 77 .
GABIZON A , HOROWITZ A T , GOREN D , et al . In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice [J]. Clin Cancer Res , 2003 , 9 ( 17 ): 6551 - 6559 .
GUIDOLIN K , ZHENG G . Nanomedicines lost in translation [J]. ACS Nano , 2019 , 13 ( 12 ): 13620 - 13626 .
SUN X L , YAN X F , JACOBSON O , et al . Improved tumor uptake by optimizing liposome based RES blockade strategy [J]. Theranostics , 2017 , 7 ( 2 ): 319 - 328 .
BARENHOLZ Y . Liposome application:Problems and prospects [J]. Curr Opin Colloid Interface Sci , 2001 , 6 ( 1 ): 66 - 77 .
MOGHIMI S M , SZEBENI J . Stealth liposomes and long circulating nanoparticles:Critical issues in pharmacokinetics,opsonization and protein-binding properties [J]. Prog Lipid Res , 2003 , 42 ( 6 ): 463 - 478 .
TIROSH O , BARENHOLZ Y , KATZHENDLER J , et al . Hydration of polyethylene glycol-grafted liposomes [J]. Biophys J , 1998 , 74 ( 3 ): 1371 - 1379 .
LEE S H , SATO Y , HYODO M , et al . Topology of surface ligands on liposomes:Characterization based on the terms,incorporation ratio,surface anchor density,and reaction yield [J]. Biol Pharm Bull , 2016 , 39 ( 12 ): 1983 - 1994 .
VERMA A , STELLACCI F . Effect of surface properties on nanoparticle-cell interactions [J]. Small , 2010 , 6 ( 1 ): 12 - 21 .
ALBANESE A , TANG P S , CHAN W C W . The effect of nanoparticle size,shape,and surface chemistry on biological systems [J]. Annu Rev Biomed Eng , 2012 , 14 : 1 - 16 .
马玉花 , 方玉 , 保怡 , 等 . 药物-脂质共轭物研究进展 [J]. 药学学报 , 2020 , 55 ( 10 ): 2281 - 2290 .
TONG X Q , PAN W H , SU T , et al . Recent advances in natural polymer-based drug delivery systems [J]. React Funct Polym , 2020 , 148 : 104501 .
MCSWEENEY M D , VERSFELD Z C , CARPENTER D M , et al . Physician awareness of immune responses to polyethylene glycol-drug conjugates [J]. Clin Transl Sci , 2018 , 11 ( 2 ): 162 - 165 .
SCHELLEKENS H , HENNINK W E , BRINKS V . The immunogenicity of polyethylene glycol:Facts and fiction [J]. Pharm Res , 2013 , 30 ( 7 ): 1729 - 1734 .
MOHAMED M , LILA A S A , SHIMIZU T , et al . PEGylated liposomes:Immunological responses [J]. Sci Technol Adv Mater , 2019 , 20 ( 1 ): 710 - 724 .
WANG B , ZHANG Y B , ZHANG L . Recent progress on micro-and nano-robots:Towards in vivo tracking and localization [J]. Quant Imaging Med Surg , 2018 , 8 ( 5 ): 461 - 479 .
PALCHETTI S , COLAPICCHIONI V , DIGIACOMO L , et al . The protein corona of circulating PEGylated liposomes [J]. Biochim Biophys Acta , 2016 , 1858 ( 2 ): 189 - 196 .
官娟 , 陆伟跃 , 占昌友 . 血浆蛋白对脂质体体内性能的调控 [J]. 药学学报 , 2019 , 54 ( 12 ): 2240 - 2250 .
KIRPOTIN D B , DRUMMOND D C , SHAO Y , et al . Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models [J]. Cancer Res , 2006 , 66 ( 13 ): 6732 - 6740 .
EMANUEL N , KEDAR E , BOLOTIN E M , et al . Targeted delivery of doxorubicin via sterically stabilized immunoliposomes:Pharmacokinetics and biodistribution in tumor-bearing mice [J]. Pharm Res , 1996 , 13 ( 6 ): 861 - 868 .
BHALERAO A , SIVANDZADE F , ARCHIE S R , et al . In vitro modeling of the neurovascular unit:Advances in the field [J]. Fluids Barriers CNS , 2020 , 17 ( 1 ): 22 .
CANFIELD S G , STEBBINS M J , MORALES B S , et al . An isogenic blood-brain barrier model comprising brain endothelial cells,astrocytes,and neurons derived from human induced pluripotent stem cells [J]. J Neurochem , 2017 , 140 ( 6 ): 874 - 888 .
PATIL Y P , JADHAV S . Novel methods for liposome preparation [J]. Chem Phys Lipids , 2014 , 177 : 8 - 18 .
SHUKLA D , CHAKRABORTY S , SINGH S , et al . Lipid-based oral multiparticulate formulations-advantages,technological advances and industrial applications [J]. Expert Opin Drug Deliv , 2011 , 8 ( 2 ): 207 - 224 .
SCHNEIDER T , SACHSE A , RÖBLING G , et al . Large-scale production of liposomes of defined size by a new continuous high pressure extrusion device [J]. Drug Dev Ind Pharm , 1994 , 20 ( 18 ): 2787 - 2807 .
PUPO E , PADRÓN A , SANTANA E , et al . Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization-extrusion technique [J]. J Control Release , 2005 , 104 ( 2 ): 379 - 396 .
WANG Y N , WANG C H , LI K Y , et al . Recent advances of nanomedicine-based strategies in diabetes and complications management:Diagnostics,monitoring,and therapeutics [J]. J Control Release , 2021 , 330 : 618 - 640 .
FILIPCZAK N , PAN J Y , YALAMARTY S S K , et al . Recent advancements in liposome technology [J]. Adv Drug Deliv Rev , 2020 , 156 : 4 - 22 .
ROCES C B , PORT E C , DASKALAKIS N N , et al . Rapid scale-up and production of active-loaded PEGylated liposomes [J]. Int J Pharm , 2020 , 586 : 119566 .
0
Views
21
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution