浏览全部资源
扫码关注微信
1.江西中医药大学 现代中药制剂教育部重点实验室,南昌 330004
2.陕西中医药大学 药学院,陕西 咸阳 712046
3.陕西省食品药品安全监测重点实验室,西安 710065
Received:03 March 2022,
Published Online:14 June 2022,
Published:05 January 2023
移动端阅览
徐杰,张小飞,李风琴等.山蜡梅叶挥发油抗急性肺损伤的分子作用机制分析[J].中国实验方剂学杂志,2023,29(01):123-132.
XU Jie,ZHANG Xiaofei,LI Fengqin,et al.Molecular Mechanism of Essential Oil from Chimonanthus nitens Leaves Against Acute Lung Injury[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(01):123-132.
徐杰,张小飞,李风琴等.山蜡梅叶挥发油抗急性肺损伤的分子作用机制分析[J].中国实验方剂学杂志,2023,29(01):123-132. DOI: 10.13422/j.cnki.syfjx.20220647.
XU Jie,ZHANG Xiaofei,LI Fengqin,et al.Molecular Mechanism of Essential Oil from Chimonanthus nitens Leaves Against Acute Lung Injury[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(01):123-132. DOI: 10.13422/j.cnki.syfjx.20220647.
目的
2
基于网络药理学和分子对接技术对山蜡梅叶挥发油(CLO)治疗急性肺损伤(ALI)的作用机制进行预测,并通过建立ALI模型对其作用通路进行初步验证。
方法
2
采用气相色谱-质谱法(GC-MS)对CLO进行成分分析;从PharmMapper和SwissTargetPrediction数据库中获取其成分靶点,GeneCards、在线人类孟德尔遗传数据库(OMIM)和DisGeNET获取ALI相关靶点,与高通量基因表达数据库(GEO)获取的ALI差异表达基因(DEGs)在Venny 2.1.0平台上交集分析获得CLO抗ALI的潜在靶点;利用STRING 11.5对潜在靶点进行蛋白质-蛋白质相互作用(PPI)分析;从美国国家生物技术信息中心(NCBI)获取潜在靶点的组织表达情况并构建靶点组织分布图;运用RStudio 4.0.0软件对潜在靶点进行基因本体(GO)功能和京都基因与基因组百科全书(KEGG)通路富集分析;利用Cytoscape 3.9.1软件构建“成分-靶点-通路”网络图,筛选出关键成分和重点通路并进行分子对接验证;通过脂多糖(LPS)诱导建立ALI模型,测定大鼠血清中白细胞介素(IL)-6和肿瘤坏死因子(TNF)-
α
的表达水平,免疫组化分析IL-17蛋白在ALI大鼠肺组织中的表达水平。
结果
2
通过GC-MS鉴定出CLO的19个成分,经靶点筛选得到18个潜在靶点,PPI分析后得到15个具有相互作用关系的靶蛋白,进一步分析发现其在肺和胸腺等组织上高度表达,通过分析“成分-靶点-通路”网络图得到关键成分乙酸龙脑酯、芳樟醇、榄香醇、异丁酸香叶酯和核心靶点基质金属蛋白酶13(MMP13)、S100钙结合蛋白A9(S100A9)、脾酪氨酸激酶(SYK)及主要通路IL-17、TNF等;分子对接结果显示,CLO关键成分与IL-17信号通路的MMP13、S100A9结合稳定。药理实验结果证实CLO可以显著降低ALI大鼠血清中的IL-6和TNF-
α
含量,同时抑制大鼠肺组织中IL-17蛋白的表达水平。
结论
2
CLO可以实现对ALI的治疗作用,保护肺组织,其作用机制可能与降低ALI大鼠血清中的IL-6和TNF-
α
表达水平、抑制肺组织中IL-17信号通路的活化有关。
Objective
2
Based on network pharmacology and molecular docking techniques, the mechanism of essential oil from
Chimonanthus nitens
leaves (CLO) in the treatment of acute lung injury (ALI) was predicted, and a rat model of ALI was established to verify the mechanism of CLO.
Method
2
The composition of CLO was determined by gas chromatography-mass spectrometry (GC-MS). The component targets were obtained from PharmMapper and SwissTargetPrediction databases, ALI-related targets were obtained from GeneCards, Online Mendelian Inheritance in Man (OMIM) and DisGeNET, cross-over analysis with differential expressed genes (DEGs) of ALI obtained from Gene Expression Omnibus (GEO) on the Venny 2.1.0 platform yielded potential anti-ALI targets of CLO. Protein-protein interaction (PPI) analysis of potential targets was carried out by STRING 11.5. The tissue expression profiles of potential targets were obtained from the National Center for Biotechnology Information (NCBI) and the target tissue distribution maps were constructed. Potential targets were analyzed for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment by RStudio 4.0.0 software. Composition-target-pathway network was constructed by Cytoscape 3.9.1 software, and key components and pathways were screened out and verified by molecular docking. ALI model was established by lipopolysaccharide (LPS) induction, levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-
α
in serum of rats were measured, the expression levels of IL-17 protein in the lung tissue of ALI rats were analyzed by immunohistochemistry.
Result
2
A total of 19 components of CLO were identified by GC-MS, and 18 potential targets were obtained by target screening. After PPI analysis, 15 target proteins with interaction relationship were obtained, further analysis showed that they were highly expressed in lung and thymus. The network diagram of component-target-pathway was analyzed to obtain the key components, including bornyl acetate, linalool, elemol, geranyl isobutyrate, and the core targets of matrix metalloproteinase 13 (MMP13), S100 calcium binding protein A9 (S100A9), spleen tyrosine kinase (SYK), as well as the main signaling pathways, such as IL-17 and TNF. The results of molecular docking showed that the key components were stably bound to MMP13 and S100A9 of IL-17 signaling pathway. The results of pharmacological experiment confirmed that CLO could significantly inhibit the expression of IL-6 and TNF-
α
in serum of ALI rats, and decrease the expression of IL-17 protein in lung tissue of ALI rats.
Conclusion
2
CLO can achieve the therapeutic effect on ALI and protect lung tissue, the mechanism may be related to the decrease of the expression of IL-6 and TNF-
α
in serum and the inhibition of the activation of IL-17 signaling pathway in lung tissue of ALI rats.
BIAN S , CAI H F , CUI Y B , et al . Nanomedicine-based therapeutics to combat acute lung injury [J]. Int J Nanomedicine , 2021 , 16 : 2247 - 2269 .
卢悦 , 张平平 , 王东强 , 等 . 急性肺损伤中医病因病机的探讨 [J]. 中国中医急症 , 2020 , 29 ( 2 ): 280 - 282 .
王京龙 , 杨斌 , 郑丹丹 , 等 . 基于网络药理学二黄汤治疗急性肺损伤的作用机制研究 [J]. 药学学报 , 2021 , 56 ( 1 ): 244 - 256 .
马小龙 , 陈跃如 , 沈菲妍 , 等 . 传统中医药在急性肺损伤中的治疗作用和机制的研究进展 [J]. 中国现代应用药学 , 2022 , 39 ( 2 ): 269 - 276 .
刘官斌 , 潘俊辉 , 王鹏 , 等 . 清肺理痰方各有效成分组对脂多糖诱导的急性肺损伤大鼠的影响 [J]. 中国实验方剂学杂志 , 2014 , 20 ( 15 ): 154 - 159 .
国家药典委员会 . 中华人民共和国药典:一部 [M]. 北京 : 人民卫生出版社 , 1977 : 50 - 51 .
何明 , 李晓宇 . 山腊梅叶镇痛、镇咳、祛痰作用的实验研究 [J]. 中国中医药科技 , 1997 , 4 ( 6 ): 366 .
刁军成 , 伍学洲 , 丁舸 . 山腊梅叶消毒抑菌的实验研究 [J]. 江西中医药 , 2002 , 33 ( 6 ): 35 .
SUN Q , ZHU J J , CAO F W , et al . Anti-inflammatory properties of extracts from Chimonanthus nitens Oliv. leaf [J]. PLoS One , 2017 , 12 ( 7 ): e0181094 .
HUANG W P , WEN Z Q , WANG M M , et al . Anticomplement and antitussive activities of major compound extracted from Chimonanthus nitens Oliv. leaf [J]. Biomed Chromatogr , 2020 , 34 ( 2 ): e4736 .
袁青青 , 张行 , 李媛 , 等 . 山腊梅叶挥发油镇咳、平喘、祛痰、抗炎及免疫调节作用研究 [J]. 亚太传统医药 , 2018 , 14 ( 12 ): 17 - 19 .
万敏 , 姚于飞 , 付王威 , 等 . 黄金茶挥发油提取工艺优化、成分分析及抗氧化研究 [J]. 食品工业科技 , 2021 , 42 ( 15 ): 150 - 156 .
陈向阳 , 毕淑峰 , 姚瑶 , 等 . 柳叶蜡梅叶挥发油体外抗氧化活性 [J]. 光谱实验室 , 2013 , 30 ( 3 ): 1484 - 1487 .
吴艳秋 , 刘宇灵 , 林龙飞 , 等 . 山蜡梅叶化学成分、药理作用及临床应用研究进展 [J]. 中华中医药杂志 , 2021 , 36 ( 11 ): 6599 - 6607 .
于宏 , 汪涛涌 , 王建 , 等 . 山蜡梅的化学成分及其生物活性研究进展 [J]. 药物分析杂志 , 2021 , 41 ( 9 ): 1477 - 1486 .
王梁凤 , 李慧婷 , 王堯 , 等 . 基于网络药理学和分子对接技术探讨生脉注射液抗新型冠状病毒肺炎的作用机制 [J]. 中草药 , 2020 , 51 ( 11 ): 2977 - 2987 .
高雅 , 王云 , 郑颖豪 , 等 . 基于HPLC-Q-TOF-MS/MS和网络药理学方法探讨栀子治疗缺血性脑中风的潜在药效物质及作用机制 [J]. 中国实验方剂学杂志 , 2021 , 27 ( 14 ): 119 - 128 .
陈青垚 , 王梁凤 , 李慧婷 , 等 . 含丁香方剂的数据挖掘及其治疗腹泻的作用机制分析 [J]. 中国实验方剂学杂志 , 2021 , 27 ( 5 ): 158 - 170 .
舒任庚 , 李莎莎 , 张普照 , 等 . 采收时间及提取方法对山蜡梅挥发油成分的影响 [J]. 中国医院药学杂志 , 2010 , 30 ( 9 ): 761 - 765 .
KIM S , CHEN J , CHENG T J , et al . PubChem 2019 update:Improved access to chemical data [J]. Nucleic Acids Res , 2019 , 47 ( D1 ): D1102 - D1109 .
WANG X , PAN C X , GONG J Y , et al . Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs [J]. J Chem Inf Model , 2016 , 56 ( 6 ): 1175 - 1183 .
DAINA A , MICHIELIN O , ZOETE V . SwissTargetPrediction:Updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids Res , 2019 , 47 ( W1 ): W357 - W364 .
AMBERGER J S , BOCCHINI C A , SCHIETTECATTE F , et al . OMIM.org:Online Mendelian Inheritance in Man (OMIM ® ),an online catalog of human genes and genetic disorders [J]. Nucleic Acids Res , 2015 , 43 ( Database issue ): D789 - D798 .
PIÑERO J , RAMÍREZ-ANGUITA J M , SAÜCH-PITARCH J , et al . The DisGeNET knowledge platform for disease genomics:2019 update [J]. Nucleic Acids Res , 2020 , 48 ( D1 ): D845 - D855 .
THE UNIPROT CONSORTIUM . UniProt:The universal protein knowledgebase in 2021 [J]. Nucleic Acids Res , 2021 , 49 ( D1 ): D480 - D489 .
BARRETT T , WILHITE S E , LEDOUX P , et al . NCBI GEO:Archive for functional genomics data sets-update [J]. Nucleic Acids Res , 2013 , 41 ( D1 ): D991 - D995 .
GOODMAN S , BENYISHAY A , LYU Z , et al . GEOquery:Integrating HPC systems and public web-based geospatial data tools [J]. Comput Geosci , 2019 , 122 : 103 - 112 .
RITCHIE M E , PHIPSON B , WU D , et al . Limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res , 2015 , 43 ( 7 ): e47 .
SZKLARCZYK D , GABLE A L , NASTOU K C , et al . The STRING database in 2021:Customizable protein-protein networks,and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res , 2021 , 49 ( D1 ): D605 - D612 .
WU T Z , HU E Q , XU S B , et al . ClusterProfiler 4.0:A universal enrichment tool for interpreting omics data [J]. Innovation (Camb) , 2021 , 2 ( 3 ): 100141 .
BURLEY S K , BERMAN H M , CHRISTIE C , et al . RCSB protein data bank:Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education [J]. Protein Sci , 2018 , 27 ( 1 ): 316 - 330 .
SCHÖNING-STIERAND K , DIEDRICH K , FÄHRROLFES R , et al . ProteinsPlus:Interactive analysis of protein-ligand binding interfaces [J]. Nucleic Acids Res , 2020 , 48 ( W1 ): W48 - W53 .
VOLKAMER A , KUHN D , GROMBACHER T , et al . Combining global and local measures for structure-based druggability predictions [J]. J Chem Inf Model , 2012 , 52 ( 2 ): 360 - 372 .
TROTT O , OLSON A J . AutoDock Vina:Improving the speed and accuracy of docking with a new scoring function,efficient optimization and multithreading [J]. J Comput Chem , 2010 , 31 ( 2 ): 455 - 461 .
ADASME M F , LINNEMANN K L , BOLZ S N , et al . PLIP 2021:Expanding the scope of the protein-ligand interaction profiler to DNA and RNA [J]. Nucleic Acids Res , 2021 , 49 ( W1 ): W530 - W534 .
WAN M , YAO Y F , WU W , et al . Chimonanthus nitens Oliv. essential oil mitigates lipopolysaccharide-induced acute lung injury in rats [J]. Food Chem Toxicol , 2021 , 156 : 112445 .
LIU B H , HE R Y , ZHANG L , et al . Inflammatory caspases drive pyroptosis in acute lung injury [J]. Front Pharmacol , 2021 , 12 : 631256 .
李嫣 . 共刺激分子B7-H3对LPS诱导的急性肺损伤的免疫调节作用及其机制研究 [D]. 苏州 : 苏州大学 , 2015 .
ZHAO J P , YU H , LIU Y D , et al . Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol , 2016 , 311 ( 5 ): L868 - L880 .
YANG H , ZHAO R G , CHEN H , et al . Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11 [J]. IUBMB Life , 2014 , 66 ( 12 ): 854 - 859 .
AN Q , REN J N , LI X , et al . Recent updates on bioactive properties of linalool [J]. Food Funct , 2021 , 12 ( 21 ): 10370 - 10389 .
KIM M G , KIM S M , MIN J H , et al . Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation [J]. Int Immunopharmacol , 2019 , 74 : 105706 .
YANG H , JUNG E M , AHN C , et al . Elemol from Chamaecyparis obtusa ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis [J]. Int J Mol Med , 2015 , 36 ( 2 ): 463 - 472 .
ROSZYK E , PUSZCZEWICZ M . Role of human microbiome and selected bacterial infections in the pathogenesis of rheumatoid arthritis [J]. Reumatologia , 2017 , 55 ( 5 ): 242 - 250 .
李兆双 , 王喜男 , 王鹏 , 等 . 天然柠檬醛衍生物对食品腐败细菌的抑制活性 [J]. 浙江农业学报 , 2016 , 28 ( 11 ): 1928 - 1933 .
TANG J , XU L Q , ZENG Y W , et al . Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF- κ B signaling pathway [J]. Int Immunopharmacol , 2021 , 91 : 107272 .
BULEK K , LIU C N , SWAIDANI S , et al . The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation [J]. Nat Immunol , 2011 , 12 ( 9 ): 844 - 852 .
KRUEGER J G , BRUNNER P M . Interleukin-17 alters the biology of many cell types involved in the genesis of psoriasis,systemic inflammation and associated comorbidities [J]. Exp Dermatol , 2018 , 27 ( 2 ): 115 - 123 .
LIAO X , ZHANG W , DAI H , et al . Neutrophil-derived IL-17 promotes ventilator-induced lung injury via p38 MAPK/MCP-1 pathway activation [J]. Front Immunol , 2021 , 12 : 768813 .
YAO Z X , NIE L , ZHAO Y P , et al . Salubrinal suppresses IL-17-induced upregulation of MMP-13 and extracellular matrix degradation through the NF- κ B pathway in human nucleus pulposus cells [J]. Inflammation , 2016 , 39 ( 6 ): 1997 - 2007 .
LIM S Y , RAFTERY M J , GECZY C L . Oxidative modifications of DAMPs suppress inflammation:The case for S100A8 and S100A9 [J]. Antioxid Redox Signal , 2011 , 15 ( 8 ): 2235 - 2248 .
CESARO A , ANCERIZ N , PLANTE A , et al . An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis [J]. PLoS One , 2012 , 7 ( 9 ): e45478 .
XIAO Q F , CUI Y , ZHAO Y L , et al . Orientin relieves lipopolysaccharide-induced acute lung injury in mice:The involvement of its anti-inflammatory and anti-oxidant properties [J]. Int Immunopharmacol , 2021 , 90 : 107189 .
CHEN T , GUO Q Q , WANG H M , et al . Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/Rho kinase/NF- к B pathways in vivo and in vitro [J]. Free Radic Res , 2015 , 49 ( 12 ): 1459 - 1468 .
ZHU W D , XU J , ZHANG M , et al . MicroRNA‑21 inhibits lipopolysaccharide‑induced acute lung injury by targeting nuclear factor‑ κ B [J]. Exp Ther Med , 2018 , 16 ( 6 ): 4616 - 4622 .
0
Views
25
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution