浏览全部资源
扫码关注微信
山东中医药大学,济南 250355
Received:02 January 2022,
Published Online:16 February 2022,
Published:05 August 2022
移动端阅览
张小雨,王雪振,夏雷.常春藤素抗肿瘤作用及机制研究进展[J].中国实验方剂学杂志,2022,28(15):275-282.
ZHANG Xiaoyu,WANG Xuezhen,XIA Lei.Anti-tumor Effect and Mechanisms of Hederin: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(15):275-282.
张小雨,王雪振,夏雷.常春藤素抗肿瘤作用及机制研究进展[J].中国实验方剂学杂志,2022,28(15):275-282. DOI: 10.13422/j.cnki.syfjx.20220829.
ZHANG Xiaoyu,WANG Xuezhen,XIA Lei.Anti-tumor Effect and Mechanisms of Hederin: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(15):275-282. DOI: 10.13422/j.cnki.syfjx.20220829.
常春藤素是一种从紫草、白头翁、铁线莲等多种草本植物中提取的单枝三萜皂苷类天然活性成分,其因抗炎、抗痉挛、抗氧化、抗利什曼原虫病等多重药理功效备受关注。研究发现,常春藤素具有显著的抗肿瘤生物活性,有望成为潜在治疗恶性肿瘤的药物。迄今为止,多项研究表明,常春藤素可通过促进肿瘤细胞凋亡,抑制肿瘤细胞增殖、转移及侵袭,诱导肿瘤细胞自噬等作用在乳腺癌、肺癌、肝癌和胰腺癌等多种恶性肿瘤中均表现出其有抗肿瘤功效,其抗肿瘤活性的作用机制主要体现在可通过调节胞内磷脂磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)通路、线粒体中活性氧(ROS)、微小RNA(miRNA)触发肿瘤凋亡;其抗增殖活性主要体现在对细胞周期蛋白(cyclin)和细胞周期蛋白依赖性激酶(CDK)的调节作用;其通过阻断上皮间转化(EMT)进程等抑制肿瘤细胞的转移和侵袭。此外常春藤素还可以通过影响肿瘤代谢重编程,诱导肿瘤细胞自噬等发挥其抗肿瘤作用。常春藤素抗肿瘤作用机制广泛,将来可能成为新型抗肿瘤药物,为常春藤素在抗肿瘤领域的研究开拓思路。目前,针对常春藤素的研究较少且缺乏对常春藤素抗肿瘤作用机制的系统性综述,为此,该研究基于常春藤素抗肿瘤作用进行文献综述,以期为科研和临床工作者提供借鉴及参考信息。
Hederin is a natural active component of triterpenoid saponins extracted from many medicinal herbs, such as
Lithospermum erythrorhizon
,
Pulsatilla chinensis
, and
Clematis florida
. It has attracted much attention from doctors for its anti-inflammatory, anti-convulsive, anti-oxidation and anti-leishmaniasis activities. Hederin has significant anti-tumor bioactivity and is expected to be a potential drug for the treatment of malignant tumors. The available studies have demonstrated that hederin can promote the apoptosis, inhibit the proliferation, metastasis, and invasion, and induce the autophagy of tumor cells, exhibiting a promising prospect in the treatment of breast cancer, lung cancer, liver cancer, and pancreatic cancer. Specifically, hederin can regulate the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, reactive oxygen species (ROS), and microRNA (miRNA) to trigger tumor cell apoptosis. Its anti-proliferation activity is mainly reflected in the regulation of cyclin and cyclin-dependent kinase (CDK). Hederin inhibits the metastasis and invasion of tumor cells by blocking epithelial-mesenchymal transformation (EMT). In addition, hederin can influence metabolic reprogramming to induce tumor cell autophagy. Hederin is involved in a variety of pathways to exert its anti-tumor activity and may become a novel anti-tumor drug in the future, which give new sights into the study of hederin in the anti-tumor field. There are few studies about hederin and no systematic review of its anti-tumor mechanisms. Therefore, this study reviewed the studies about the anti-tumor mechanism of hederin, aiming to provide reference and information for researchers and clinical staff.
ROY P S , SAIKIA B J . Cancer and cure: A critical analysis [J]. Indian J Cancer , 2016 , 53 ( 3 ): 441 - 442 .
WANG J J , LEI K F , HAN F . Tumor microenvironment: Recent advances in various cancer treatments [J]. Eur Rev Med Pharmacol Sci , 2018 , 22 ( 12 ): 3855 - 3864 .
STRATTON M R , CAMPBELL P J , FUTREAL P A . The cancer genome [J]. Nature , 2009 , 458 ( 7239 ): 719 - 724 .
HOLOHAN C , VAN SCHAEYBROECK S , LONGLEY D B , et al . Cancer drug resistance: an evolving paradigm [J]. Nat Rev Cancer , 2013 , 13 ( 10 ): 714 - 726 .
CHENG L , XIA T S , WANG Y F , et al . The anticancer effect and mechanism of α -hederin on breast cancer cells [J]. Int J Oncol , 2014 , 45 ( 2 ): 757 - 763 .
FANG C , LIU Y , CHEN L , et al . α -Hederin inhibits the growth of lung cancer A549 cells in vitro and in vivo by decreasing SIRT6 dependent glycolysis [J]. Pharm Biol , 2021 , 59 ( 1 ): 11 - 20 .
ADAMSKA A , STEFANOWICZ-HAJDUK J , OCHOCKA J R . Alpha-hederin, the active saponin of nigella sativa, as an anticancer agent inducing apoptosis in the SKOV-3 cell line [J]. Molecules , 2019 , doi: 10.3390/molecules24162958 http://dx.doi.org/10.3390/molecules24162958 .
CHEN W X , XU L Y , QIAN Q , et al . d Rhamnose β -hederin reverses chemoresistance of breast cancer cells by regulating exosome-mediated resistance transmission [J]. Biosci Rep , 2018 , doi: 10.1042/BSR20180110 http://dx.doi.org/10.1042/BSR20180110 .
LI D W , HYUN J E , JEONG C S , et al . Antiinflammatory activity of alpha-hederin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract [J]. Biol Pharm Bull , 2003 , 26 ( 4 ): 429 - 433 .
TRUTE A , GROSS J , MUTSCHLER E , et al . In vitro antispasmodic compounds of the dry extract obtained from Hedera helix [J]. Planta Med , 1997 , 63 ( 2 ): 125 - 129 .
GÜLÇIN I , MSHVILDADZE V , GEPDIREMEN A , et al . Antioxidant activity of saponins isolated from ivy: Alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F [J]. Planta Med , 2004 , 70 ( 6 ): 561 - 563 .
RIDOUX O , DI GIORGIO C , DELMAS F , et al . In vitro antileishmanial activity of three saponins isolated from ivy, alpha-hederin, beta-hederin and hederacolchiside A(1), in association with pentamidine and amphotericin B [J]. Phytother Res , 2001 , 15 ( 4 ): 298 - 301 .
LI J , WU D D , ZHANG J X , et al . Mitochondrial pathway mediated by reactive oxygen species involvement in α -hederin-induced apoptosis in hepatocellular carcinoma cells [J]. World J Gastroenterol , 2018 , 24 ( 17 ): 1901 - 1910 .
LEE K T , SOHN I C , PARK H J , et al . Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus [J]. Planta Med , 2000 , 66 ( 4 ): 329 - 332 .
ZHAN Y , WANG K , LI Q , et al . The novel autophagy inhibitor alpha-hederin promoted paclitaxel cytotoxicity by increasing reactive oxygen species accumulation in non-small cell lung cancer cells [J]. Int J Mol Sci , 2018 , doi: 10.3390/ijms19103221 http://dx.doi.org/10.3390/ijms19103221 .
ROONEY S , RYAN M F . Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines [J]. Anticancer Res , 2005 , 25 ( 3 b): 2199 - 2204 .
LORENT J H , LÉONARD C , ABOUZI M , et al . α -Hederin induces apoptosis, membrane permeabilization and morphologic changes in two cancer cell lines through a cholesterol-dependent mechanism [J]. Planta Med , 2016 , 82 ( 18 ): 1532 - 1539 .
GEPDIREMEN A , MSHVILDADZE V , SüLEYMAN H , et al . Acute anti-inflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F in carrageenan-induced rat paw edema [J]. Phytomedicine , 2005 , 12 ( 6/7 ): 440 - 444 .
WONG R S . Apoptosis in cancer: From pathogenesis to treatment [J]. Clin Cancer Res , 2011 , doi: 10.1186/1756-9966-30-87 http://dx.doi.org/10.1186/1756-9966-30-87 .
PISTRITTO G , TRISCIUOGLIO D , CECI C , et al . Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies [J]. Aging , 2016 , 8 ( 4 ): 603 - 619 .
BACUS S S , GUDKOV A V , LOWE M , et al . Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53 [J]. Oncogene , 2001 , 20 ( 2 ): 147 - 155 .
KASHYAP D , GARG V K , GOEL N . Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis [J]. Adv Protein Chem Str , 2021 , doi: 10.1016/bs.apcsb.2021.01.003 http://dx.doi.org/10.1016/bs.apcsb.2021.01.003 .
XU X , LAI Y , HUA Z C . Apoptosis and apoptotic body: Disease message and therapeutic target potentials [J]. Bioscience Rep , 2019 , doi: 10.1042/BSR20180992 http://dx.doi.org/10.1042/BSR20180992 .
WANG J , DENG H , ZHANG J , et al . α -Hederin induces the apoptosis of gastric cancer cells accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway [J]. Phytother Res , 2020 , 34 ( 3 ): 601 - 611 .
KLEIN K , HE K , YOUNES A I , et al . Role of mitochondria in cancer immune evasion and potential therapeutic approaches [J]. Front Immunol , 2020 , doi: 10.3389/fimmu.2020.573326 http://dx.doi.org/10.3389/fimmu.2020.573326 .
YANG Y , KARAKHANOVA S , HARTWIG W , et al . Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy [J]. J Cell Physiol , 2016 , 231 ( 12 ): 2570 - 2581 .
DENG H , MA J , LIU Y , et al . Combining α -Hederin with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via mitochondrial related apoptosis pathway [J]. Biomed Pharmacother , 2019 , doi: 10.1016/j.biopha.2019.109477 http://dx.doi.org/10.1016/j.biopha.2019.109477 .
LIU Y , LEI H , MA J , et al . α -Hederin increases the apoptosis of cisplatin-resistant gastric cancer cells by activating mitochondrial pathway in vivo and vitro [J]. Oncotargets Ther , 2019 , doi: 10.2147/OTT.S221005 http://dx.doi.org/10.2147/OTT.S221005 .
SWAMY S M , HUAT B T . Intracellular glutathione depletion and reactive oxygen species generation are important in alpha-hederin-induced apoptosis of P388 cells [J]. Mol Cell Biochem , 2003 , 245 ( 1-2 ): 127 - 139 .
WANG J , WU D , ZHANG J , et al . α-Hederin induces apoptosis of esophageal squamous cell carcinoma via an oxidative and mitochondrial-dependent pathway [J]. Digest Dis Sci , 2019 , 64 ( 12 ): 3528 - 3538 .
CALLEJA V , LAGUERRE M , PARKER P J , et al . Role of a novel PH-kinase domain interface in PKB/Akt regulation: Structural mechanism for allosteric inhibition [J]. PLoS Biol , 2009 , doi: 10.1371/journal.pbio.1000017 http://dx.doi.org/10.1371/journal.pbio.1000017 .
XIA P , XU X Y . PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application [J]. Am J Cancer Res , 2015 , 5 ( 5 ): 1602 - 1609 .
BAHR H I , IBRAHIEM A T , GABR A M , et al . Chemopreventive effect of α -hederin/carboplatin combination against experimental colon hyperplasia and impact on JNK signaling [J]. Toxicol Mech Method , 2021 , 31 ( 2 ): 138 - 149 .
CHENG L , XIA T S , WANG Y F , et al . The apoptotic effect of D rhamnose β -hederin, a novel oleanane-type triterpenoid saponin on breast cancer cells [J]. PLoS One , 2014 , doi: 10.1371/journal.pone.0090848 http://dx.doi.org/10.1371/journal.pone.0090848 .
DíAZ-CORáNGUEZ M , LIU X , ANTONETTI D A . Tight junctions in cell proliferation [J]. Int J Mol Sci , 2019 , doi: 10.3390/ijms20235972 http://dx.doi.org/10.3390/ijms20235972 .
JARRETT A M , LIMA E , HORMUTH D A , et al . Mathematical models of tumor cell proliferation: A review of the literature [J]. Expert Rev Anticanc , 2018 , 18 ( 12 ): 1271 - 1286 .
CARDANO M , TRIBIOLI C , PROSPERI E . Targeting proliferating cell nuclear antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation [J]. Curr Cancer Drug Tar , 2020 , 20 ( 4 ): 240 - 252 .
ZHENG K , HE Z , KITAZATO K , et al . Selective autophagy regulates cell cycle in cancer therapy [J]. Theranostics , 2019 , 9 ( 1 ): 104 - 125 .
SUN D , SHEN W , ZHANG F , et al . α -Hederin arrests cell cycle at G 2 /M checkpoint and promotes mitochondrial apoptosis by blocking nuclear factor- κ B signaling in colon cancer cells [J]. Biomed Res Int , 2018 , doi: 10.1155/2018/2548378 http://dx.doi.org/10.1155/2018/2548378 .
MOLLAEI H , SAFARALIZADEH R , ROSTAMI Z . MicroRNA replacement therapy in cancer [J]. J Cell Physiol , 2019 , 234 ( 8 ): 12369 - 12384 .
ALI SYEDA Z , LANGDEN S S S , MUNKHZUL C , et al . Regulatory mechanism of microRNA expression in cancer [J]. Int J Mol Sci , 2020 , doi: 10.3390/ijms21051723 http://dx.doi.org/10.3390/ijms21051723 .
CHEN W X , CAI Y Q , LV M M , et al . Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs [J]. Tumour Bio , 2014 , 35 ( 10 ): 9649 - 9659 .
KOSAKA N , IGUCHI H , HAGIWARA K , et al . Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis [J]. J Biol Chem , 2013 , 288 ( 15 ): 10849 - 10859 .
MOREL L , REGAN M , HIGASHIMORI H , et al . Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1 [J]. J Biol Chem , 2013 , 288 ( 10 ): 7105 - 7116 .
王雪振 , 夏雷 . MiRNA-145在肿瘤表达中的生物学意义研究进展 [J]. 重庆医学 , 2021 , 50 ( 16 ): 2826 - 2830 .
CHEN W X , CHENG L , PAN M , et al . D Rhamnose β -hederin against human breast cancer by reducing tumor-derived exosomes [J]. Oncol Lett , 2018 , 16 ( 4 ): 5172 - 5178 .
SUHAIL Y , CAIN M P , VANAJA K , et al . Systems biology of cancer metastasis [J]. Cell Syst , 2019 , 9 ( 2 ): 109 - 127 .
DART A E , GORDON-WEEKS P R . The role of drebrin in cancer cell invasion [J]. Adv Exp Med Biol , 2017 , doi: 10.1007/978-4-431-56550-5-23 http://dx.doi.org/10.1007/978-4-431-56550-5-23 .
PASTUSHENKO I , BLANPAIN C . EMT transition states during tumor progression and metastasis [J]. Trends Cell Biol , 2019 , 29 ( 3 ): 212 - 226 .
BAKIR B , CHIARELLA A M , PITARRESI J R , et al . EMT, MET, plasticity, and tumor metastasis [J]. Trends Cell Biol , 2020 , 30 ( 10 ): 764 - 776 .
SUN D , SHEN W , ZHANG F , et al . α -Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells [J]. Biomed Pharmacother , 2018 , doi: 10.1016/j.biopha.2018.02.062 http://dx.doi.org/10.1016/j.biopha.2018.02.062 .
ZHENG L , ZHANG Z , ZHANG S , et al . RNA binding protein RNPC1 inhibits breast cancer cell metastasis via activating STARD13-correlated ceRNA network [J]. Mol Pharmaceut , 2018 , 15 ( 6 ): 2123 - 2132 .
CHENG L , XIA T S , SHI L , et al . D Rhamnose β -hederin inhibits migration and invasion of human breast cancer cell line MDA-MB-231 [J]. Biochem Bioph Res Co , 2018 , 495 ( 1 ): 775 - 780 .
HANAHAN D , WEINBERG R A . Hallmarks of cancer: the next generation [J]. Cell , 2011 , 144 ( 5 ): 646 - 674 .
WARD P S , THOMPSON C B . Metabolic reprogramming: A cancer hallmark even warburg did not anticipate [J]. Cancer Cell , 2012 , 21 ( 3 ): 297 - 308 .
WISHART D S . Emerging applications of metabolomics in drug discovery and precision medicine [J]. Nat Rev Drug Discov , 2016 , 15 ( 7 ): 473 - 484 .
ZHENG M , WU C , YANG K , et al . Novel selective hexokinase 2 inhibitor Benitrobenrazide blocks cancer cells growth by targeting glycolysis [J]. Pharmacol Res , 2021 , doi: 10.1016/j.phrs.2020.105367 http://dx.doi.org/10.1016/j.phrs.2020.105367 .
KOCATURK N M , AKKOC Y , KIG C , et al . Autophagy as a molecular target for cancer treatment [J]. Eur J Pharm Sci , 2019 , doi: 10.1016/j.ejps.2019.04.011 http://dx.doi.org/10.1016/j.ejps.2019.04.011 .
LEVY J M M , TOWERS C G , THORBURN A . Targeting autophagy in cancer [J]. Nat Rev Cancer , 2017 , 17 ( 9 ): 528 - 542 .
NAZIO F , BORDI M , CIANFANELLI V , et al . Autophagy and cancer stem cells: Molecular mechanisms and therapeutic applications [J]. Cell Death Differ , 2019 , 26 ( 4 ): 690 - 702 .
MIZUSHIMA N , KOMATSU M . Autophagy: Renovation of cells and tissues [J]. Cell , 2011 , 147 ( 4 ): 728 - 741 .
SUN J , FENG Y , WANG Y , et al . α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation [J]. Int J Oncol , 2019 , 54 ( 5 ): 1601 - 1612 .
0
Views
21
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution