浏览全部资源
扫码关注微信
1.天津中医药大学 第一附属医院,国家中医针灸临床医学研究中心,天津 300193
2.天津中医药大学 研究生院,天津 301617
Received:15 February 2022,
Published Online:19 May 2022,
Published:20 December 2022
移动端阅览
牛文晶,刘鹏,郭燕玲等.NLRP3炎症小体在糖尿病创面愈合中的作用及中医药干预的研究进展[J].中国实验方剂学杂志,2022,28(24):253-260.
NIU Wenjing,LIU Peng,GUO Yanling,et al.Role of NLRP3 Inflammasome in Diabetic Wound Healing and Intervention of Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(24):253-260.
牛文晶,刘鹏,郭燕玲等.NLRP3炎症小体在糖尿病创面愈合中的作用及中医药干预的研究进展[J].中国实验方剂学杂志,2022,28(24):253-260. DOI: 10.13422/j.cnki.syfjx.20221430.
NIU Wenjing,LIU Peng,GUO Yanling,et al.Role of NLRP3 Inflammasome in Diabetic Wound Healing and Intervention of Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(24):253-260. DOI: 10.13422/j.cnki.syfjx.20221430.
糖尿病创面久不愈合已成为严重的医学问题,可导致感染、截肢,甚至危及生命,同时造成了巨大社会经济负担。炎症状态的慢性化是糖尿病创面愈合过程延长的重要原因。NOD样受体蛋白3(NLRP3)炎症小体是一种细胞内蛋白复合物,包括NLRP3、凋亡相关颗粒样蛋白(ASC)、胱天蛋白酶-1前体(pro-Caspase-1),激活后可释放促炎因子白细胞介素-1
β
(IL-1
β
)和白细胞介素-18(IL-18)参与炎症反应。NLRP3炎症小体的激活与多种炎症性疾病的进展相关,研究发现糖尿病创面微循环障碍、晚期糖基化终产物累积、氧化应激损伤、巨噬细胞长期浸润等多种因素均能对NLRP3炎症小体产生影响,从而导致创面持续的炎症状态。因此,靶向NLRP3炎症小体,减少其过度激活,抑制其过度表达,成为治疗糖尿病创面的新策略。文章从糖尿病创面病理改变与NLRP3炎症小体相关联的角度,总结了调控糖尿病创面氧化应激、中性粒细胞外诱捕网(NETs)/NLRP3炎症小体轴、诱导巨噬细胞向M2型极化、减少晚期糖基化终产物的过量产生及促进自噬等方面,降低NLRP3炎症小体过度表达以促进创面修复的相关研究,并分析了目前中药有效成分及复方抑制NLRP3炎症小体激活的可能作用机制,以期为促进糖尿病创面愈合提供新的靶点,为中医药抗炎、促愈的机制研究提供方向参考。
Diabetic wounds are slow to heal, which poses a challenge to the medical field. Being vulnerable to infection, they are a major cause of amputation and even death and thus are costly. Chronic inflammation is an important culprit of the lingering diabetic wounds. NOD-like receptor protein 3 (NLRP3), apoptosis associated speck-like protein (ASC), and aspartate-specific proteasezymogen procaspase-1 (pro-Caspase-1), constitute an intracellular protein complex called the NLRP3 inflammasome. Activated NLRP3 inflammasome can induce the release of pro-inflammatory factors interleukin(IL)-1
β
and IL-18 and participate in a variety of inflammatory responses. The activation of the NLRP3 inflammasome is associated with several inflammatory diseases. It has been concluded that many factors such as microcirculation disorder of diabetic wounds, accumulation of advanced glycation end products, oxidative stress injury, and long-term infiltration of macrophages can influence NLRP3 inflammasome, which induce persistent inflammation of the wounds. Therefore, solutions to the diabetic wound, such as targeting the NLRP3 inflammasome, reducing its hyperactivation, and inhibiting its overexpression, have emerged. Based on the correlation between the pathological changes of diabetic wounds and NLRP3 inflammasome, this article summarized the research on the methods of reducing NLRP3 inflammasome expression to promote the healing of diabetic wounds, such as regulating diabetic wound oxidative stress, balancing neutrophil extracellular traps (NETs) / NLRP3 inflammasome axis, inducing macrophage M2 polarization, reducing the production of advanced glycation end products, and enhancing autophagy. Moreover, the mechanisms of active constituents of Chinese medicine and compound Chinese medicine prescriptions against NLRP3 inflammasome activation were analyzed. Thereby, this paper is expected to provide new targets for diabetic wound healing and a reference for research the mechanism of Chinese medicine in anti-inflammation and promoting healing.
ARMSTRONG D G , BOULTON A J M , BUS S A . Diabetic foot ulcers and their recurrence [J]. N Engl J Med , 2017 , 376 ( 24 ): 2367 - 2375 .
REARDON R , SIMRING D , KIM B , et al . The diabetic foot ulcer [J]. Aust J Gen Pract , 2020 , 49 ( 5 ): 250 - 255 .
NAJAFI B , REEVES N D , ARMSTRONG D G . Leveraging smart technologies to improve the management of diabetic foot ulcers and extend ulcer-free days in remission [J]. Diabetes Metab Res Rev , 2020 , 36 ( 1 ): e3239 - e3245 .
DAVIS F M , KIMBALL A , BONIAKOWSKI A , et al . Dysfunctional wound healing in diabetic foot ulcers: New crossroads [J]. Curr Diab Rep , 2018 , 18 ( 1 ): 2 - 8 .
刘鹏 , 王军 . CC类趋化因子配体参与糖尿病足创面愈合的研究进展 [J]. 中国糖尿病杂志 , 2022 , 30 ( 3 ): 234 - 237 .
刘鹏 , 徐阳 , 刘国涛 , 等 . 应用高通量蛋白芯片技术筛查糖尿病小鼠创面差异蛋白的研究 [J]. 中国中西医结合外科杂志 , 2021 , 27 ( 6 ): 819 - 825 .
SEOANE P I , LEE B , HOYLE C , et al . The NLRP3-inflammasome as a sensor of organelle dysfunction [J]. J Cell Biol , 2020 , 219 ( 12 ): e202006194 .
LI W , CAO T , LUO C , et al . Crosstalk between ER stress, NLRP3 inflammasome, and inflammation [J]. Appl Microbiol Biotechnol , 2020 , 104 ( 14 ): 6129 - 6140 .
MANGAN M S J , OLHAVA E J , ROUSH W R , et al . Targeting the NLRP3 inflammasome in inflammatory diseases [J]. Nat Rev Drug Discov , 2018 , 17 ( 8 ): 588 - 606 .
WANG L , HAUENSTEIN A V . The NLRP3 inflammasome: Mechanism of action, role in disease and therapies [J]. Mol Aspects Med , 2020 , doi: 10.1016/j.mam.2020.100889 http://dx.doi.org/10.1016/j.mam.2020.100889 .
WANI K , ALHARTHI H , ALGHAMDI A , et al . Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders [J]. Int J Environ Res Public Health , 2021 , 18 ( 2 ): 511 .
ZHANG X , XU A , LV J , et al . Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases [J]. Eur J Med Chem , 2020 , doi: 10.1016/j.ejmech.2019.111822 http://dx.doi.org/10.1016/j.ejmech.2019.111822 .
SHARIF H , WANG L , WANG W L , et al . Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome [J]. Nature , 2019 , 570 ( 7761 ): 338 - 343 .
GRITSENKO A , GREEN J P , BROUGH D , et al . Mechanisms of NLRP3 priming in inflammaging and age related diseases [J]. Cytokine Growth Factor Rev , 2020 , 55 : 15 - 25 .
GAIDT M M , HORNUNG V . The NLRP3 inflammasome renders cell death pro-inflammatory [J]. J Mol Biol , 2018 , 430 ( 2 ): 133 - 141 .
GROSLAMBERT M , PY B F . Spotlight on the NLRP3 inflammasome pathway [J]. J Inflamm Res , 2018 , 11 : 359 - 374 . doi: 10.2147/JIR.S141220 http://dx.doi.org/10.2147/JIR.S141220 .
GE Q , CHEN X , ZHAO Y , et al . Modulatory mechanisms of NLRP3: Potential roles in inflammasome activation [J]. Life Sci , 2021 , 267 : 118918 .
KELLEY N , JELTEMA D , DUAN Y , et al . The NLRP3 inflammasome: An overview of mechanisms of activation and regulation [J]. Int J Mol Sci , 2019 , 20 ( 13 ): 3328 .
ZAHID A , LI B , KOMBE A J K , et al . Pharmacological inhibitors of the NLRP3 inflammasome [J]. Front Immunol , 2019 , 10 : 2538 .
JO E K , KIM J K , SHIN D M , et al . Molecular mechanisms regulating NLRP3 inflammasome activation [J]. Cell Mol Immunol , 2016 , 13 ( 2 ): 148 - 159 .
ZHOU R , YAZDI A S , MENU P , et al . A role for mitochondria in NLRP3 inflammasome activation [J]. Nature , 2011 , 469 ( 7329 ): 221 - 225 .
DOWNS K P , NGUYEN H , DORFLEUTNER A , et al . An overview of the non-canonical inflammasome [J]. Mol Aspects Med , 2020 , 76 : 100924 .
PLATNICH J M , MURUVE D A . NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways [J]. Arch Biochem Biophys , 2019 , 670 : 4 - 14 .
ZHOU R , TARDIVEL A , THOREN B , et al . Thioredoxin-interacting protein links oxidative stress to inflammasome activation [J]. Nat Immunol , 2010 , 11 : 136 - 140 .
SUN X , WANG X , ZHAO Z , et al . Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF- κ B-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2 [J]. Drug Dev Res , 2021 , 82 ( 3 ): 404 - 411 .
李立 , 柴益民 . 富血小板血浆促糖尿病创面愈合机制的初步研究 [J]. 上海医学 , 2017 , 40 ( 3 ): 169 - 172 .
CANO SANCHEZ M , LANCEL S , BOULANGER E , et al . Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review [J]. Antioxidants (Basel) , 2018 , 7 ( 8 ): 98 .
QIU Z , HE Y , MING H , et al . Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes [J]. J Diabetes Res , 2019 , doi: 10.1155/2019/8151836 http://dx.doi.org/10.1155/2019/8151836 .
LIN Q , LI S , JIANG N , et al . PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation [J]. Redox Biol , 2019 , 26 : 101254 .
DAI J , ZHANG X , WANG Y , et al . ROS-activated NLRP3 inflammasome initiates inflammation in delayed wound healing in diabetic rats [J]. Int J Clin Exp Pathol , 2017 , 10 ( 9 ): 9902 - 9909 .
DEMYANENKO I A , ZAKHAROVA V V , ILYINSKAYA O P , et al . Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice [J]. Oxid Med Cell Longev , 2017 , 2017 : 6408278 .
LI Z , GUO J , BI L . Role of the NLRP3 inflammasome in autoimmune diseases [J]. Biomed Pharmacother , 2020 , 130 : 110542 .
TAN C , AZIZ M , WANG P . The vitals of NETs [J]. J Leukoc Biol , 2021 , 110 ( 4 ): 797 - 808 .
LIU D , YANG P , GAO M , et al . NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound [J]. Clin Sci (Lond) , 2019 , 133 ( 4 ): 565 - 582 .
HUANG W , JIAO J , LIU J , et al . MFG-E8 accelerates wound healing in diabetes by regulating "NLRP3 inflammasome-neutrophil extracellular traps" axis [J]. Cell Death Discov , 2020 , 6 : 84 .
LIU D , YANG P , GAO M , et al . NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound [J]. Clin Sci (Lond) , 2019 , 133 ( 4 ): 565 - 582 .
JIA Y C , QIU S , XU J , et al . Docosahexaenoic acid improves diabetic wound healing in a rat model by restoring impaired plasticity of macrophage progenitor cells [J]. Plast Reconstr Surg , 2020 ,145:942e-950e.
ZHANG J , LIU X , WAN C , et al . NLRP3 inflammasome mediates M1 macrophage polarization and IL-1 β production in inflammatory root resorption [J]. J Clin Periodontol , 2020 , 47 ( 4 ): 451 - 460 .
MOREY M , O'GAORA P , PANDIT A , et al . Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflflammatory phenotype of macrophages [J]. PLoS One , 2019 , 14 ( 8 ): e0220577 .
QING L M , FU J F , WU P F , et al . Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway [J]. Am J Transl Res , 2019 , 11 : 655 - 668 .
LIU L , CHEN M , LIN K , et al . Inhibiting Caspase-12 mediated inflammasome activation protects against oxygen-glucose deprivation injury in primary astrocytes [J]. Int J Med Sci , 2020 , 17 ( 13 ): 1936 - 1945 .
REN P , WU D , APPEL R , et al . Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice [J]. J Am Heart Assoc , 2020 , 9 ( 7 ): e014044 .
WANG T , ZHAO J , ZHANG J , et al . Heparan sulfate inhibits inflammation and improves wound healing by downregulating the NLR family pyrin domain containing 3 (NLRP3) inflammasome in diabetic rats [J]. J Diabetes , 2018 , 10 : 556 - 563 .
PERRONE A , GIOVINO A , BENNY J , et al . Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects [J]. Oxid Med Cell Longev , 2020 , 2020 : 3818196 .
LI X , WANG T , TAO Y , et al . MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome [J]. Exp Cell Res , 2022 , 410 ( 2 ): 112967 .
SON S , HWANG I , HAN S H , et al . Advanced glycation end products impair NLRP3 inflammasome-mediated innate immune responses in macrophages [J]. J Biol Chem , 2017 , 292 ( 50 ): 20437 - 20448 .
BIASIZZOM , KOPITAR-JERALAN . Interplay between NLRP3 inflammasome and autophagy [J]. Front Immunol , 2020 , 11 : 591803 .
XU J , MA Y , ZHU X , et al . Enhanced autophagy promotes the clearance of pseudomonas aeruginosa in diabetic rats with wounds [J]. Ann Transl Med , 2020 , 8 ( 21 ): 1362 .
CAO Z , WANG Y , LONG Z , et al . Interaction between autophagy and the NLRP3 inflammasome [J]. Acta Biochim Biophys Sin (Shanghai) , 2019 , 51 ( 11 ): 1087 - 1095 .
LYTRIVI M , CASTELL A L , POITOUT V , et al . Recent insights into mechanisms of β -cell lipo-and glucolipotoxicity in type 2 diabetes [J]. J Mol Biol , 2020 , 432 ( 5 ): 1514 - 1534 .
DAI J , JIANG C , CHEN H , et al . Rapamycin attenuates high glucose-induced inflammation through modulation of mTOR/NF- κ B pathways in macrophages [J]. Front Pharmacol , 2019 , 10 : 1292 .
WU J , LI X , ZHU G , et al . The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS [J]. Exp Cell Res , 2016 , 341 ( 1 ): 42 - 53 .
刘成才 , 饶春梅 , 宋昌俊 , 等 . 种植方式与栽培措施对白及产量和有效成分含量的影响研究 [J]. 中草药 , 2021 , 52 ( 21 ): 6669 - 6676 .
赵艳 , 王启斌 , 郝新才 , 等 . 白及促创面愈合作用研究进展 [J]. 中药材 , 2020 , 43 ( 4 ): 1027 - 1031 .
ZHANG Q , QI C , WANG H , et al . Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata [J]. Carbohydr Polym , 2019 , 226 : 115304 .
ZHAO Y , WANG Q , YAN S , et al . Bletilla striata polysaccharide promotes diabetic wound healing through inhibition of the NLRP3 inflammasome [J]. Front Pharmacol , 2021 , 12 : 659215 .
徐佳新 , 许浚 , 曹勇 , 等 . 中药白芍现代研究进展及其质量标志物的预测分析 [J]. 中国中药杂志 , 2021 , 46 ( 21 ): 5486 - 5495 .
杨山景 , 封安杰 , 孙越 , 等 . 白芍总苷的药理作用及机制研究进展 [J]. 中国国现代应用学 , 2021 , 38 ( 13 ): 1627 - 1633 .
SUN X , WANG X , ZHAO Z , et al . Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF- κ B-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2 [J]. Drug Dev Res , 2021 , 82 ( 3 ): 404 - 411 .
JAISWAL N , AKHTAR J , SINGH S P , et al . An overview on genistein and its various formulations [J]. Drug Res (Stuttg) , 2019 , 69 ( 6 ): 305 - 313 .
MUKUND V , MUKUND D , SHARMA V , et al . Genistein: Its role in metabolic diseases and cancer [J]. Crit Rev Oncol Hematol , 2017 , 119 : 13 - 22 .
EO H , LEE H J , LIM Y . Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice [J]. Biochem Biophys Res Commun , 2016 , 478 ( 3 ): 1021 - 1027 .
李依洋 , 杨珍 , 张晓娜 , 等 . 基于分子对接及网络药理学的托里消毒散精简方促糖尿病创面愈合作用机制研究 [J]. 中草药 , 2018 , 49 ( 14 ): 3298 - 3308 .
HU Y , LEI S , YAN Z , et al . Angelica dahurica regulated the polarization of macrophages and accelerated wound healing in diabetes: A network pharmacology study and in vivo experimental validation [J]. Front Pharmacol , 2021 , 12 : 678713 .
张晓娜 . 托里消毒散对糖尿病创面愈合的作用及机制研究 [D]. 天津 : 天津医科大学 , 2016 .
王保 , 姚嘉茵 , 尧新华 , 等 . 獐牙菜苦苷可减轻糖尿病大鼠的周围神经痛:基于抑制NOXS/ROS/NLRP3通路实验 [J]. 南方医科大学学报 , 2021 , 41 ( 6 ): 937 - 941 .
贾新菊 , 康岩 , 杨爱格 , 等 . 黄芪甲苷抑制NLRP3/IL-1 β 轴改善糖尿病小鼠血管炎性病变 [J]. 上海中医药大学学报 , 2020 , 34 ( 2 ): 66 - 70 .
葛凡 , 王文恺 , 朱景天 , 等 . 黄芪甲苷通过NLRP3炎性小体调节糖尿病动脉粥样硬化早期大鼠血脂及炎症因子的研究 [J]. 南京中医药大学学报 , 2021 , 37 ( 3 ): 383 - 387 .
傅红敏 , 任秋月 , 常柏 . 抵挡汤对糖尿病大血管病变小鼠主动脉NLRP3炎症小体活化炎症级联反应的作用机制 [J]. 中国实验方剂学杂志 , 2021 , 27 ( 11 ): 1 - 8 .
孟祥龙 , 刘晓琴 , 宁晨旭 , 等 . 生、熟地黄通过AMPK介导NF- κ B/NLRP3信号通路改善高脂饲料并链脲佐菌素诱导的糖尿病小鼠的作用机制差异性研究 [J]. 中国中药杂志 , 2021 , 46 ( 221 ): 5627 - 5640 .
HU R , WANG M Q , NI S H , et al . Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF- κ B/NLRP3 signaling pathway in AGEs-induced HUVECs [J]. Eur J Pharmacol , 2020 , 867 : 172797 .
DENG X , HUANG W , PENG J , et al . Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via Inhibiting ROS-NLRP3 inflammasome signaling inflammation [J]. 2018 , 41 ( 1 ): 260 - 275 .
0
Views
24
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution