浏览全部资源
扫码关注微信
上海中医药大学 附属曙光医院,上海 201203
Received:03 June 2022,
Published Online:20 July 2022,
Published:20 January 2023
移动端阅览
王香香,王煜姣,李莉等.基于线粒体自噬及Pink1/Parkin信号通路探讨柴胡疏肝散治疗功能性消化不良大鼠的作用机制[J].中国实验方剂学杂志,2023,29(02):45-51.
WANG Xiangxiang,WANG Yujiao,LI Li,et al.Mechanism of Chaihu Shugansan in Treatment of Functional Dyspepsia in Rats Based on Mitophagy and Pink1/Parkin Signaling Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(02):45-51.
王香香,王煜姣,李莉等.基于线粒体自噬及Pink1/Parkin信号通路探讨柴胡疏肝散治疗功能性消化不良大鼠的作用机制[J].中国实验方剂学杂志,2023,29(02):45-51. DOI: 10.13422/j.cnki.syfjx.20221506.
WANG Xiangxiang,WANG Yujiao,LI Li,et al.Mechanism of Chaihu Shugansan in Treatment of Functional Dyspepsia in Rats Based on Mitophagy and Pink1/Parkin Signaling Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(02):45-51. DOI: 10.13422/j.cnki.syfjx.20221506.
目的
2
基于线粒体自噬及PTEN诱导激酶1(Pink1)/E3泛素连接酶(Parkin)信号通路探讨柴胡疏肝散治疗功能性消化不良大鼠的作用机制。
方法
2
将40只SD大鼠按照随机分组原则分为正常组、模型组、柴胡疏肝散组、阳性药物组(多潘立酮),每组10只。正常组大鼠不予造模,其他各组采用夹尾刺激法制备功能性消化不良大鼠模型,每次造模结束后,正常组及模型组灌胃生理盐水,柴胡疏肝散组和多潘立酮组则分别用柴胡疏肝散(4.8 g·kg
-1
)及多潘立酮(4.5 mg·kg
-1
)灌胃。造模用药28 d后取材,检测每组大鼠胃排空率及小肠推进率;苏木素-伊红(HE)染色观察胃窦组织损伤情况;透射电子显微镜(TEM)观察胃间质细胞(ICCs)超微结构;免疫荧光共定位法观察细胞色素C氧化酶(COX Ⅳ)与Parkin的表达;蛋白免疫印迹法(Western blot)检测微管相关蛋白1轻链3(LC3)、线粒体自噬相关蛋白PHB2、Pink1、Parkin、USP30的表达水平。
结果
2
与正常组比较,模型组大鼠胃排空率及小肠推进率均明显下降(
P
<
0.05);与模型组比较,柴胡疏肝散组胃排空率及小肠推进率均明显提高(
P
<
0.05)。透射电镜结果显示,柴胡疏肝散可减轻胃窦组织线粒体肿胀程度。免疫荧光结果显示,与正常组比较,Parkin在线粒体的荧光表达显著提高(
P
<
0.01);与模型组比较,Parkin在线粒体的荧光表达显著减少(
P
<
0.01)。Western blot结果显示,与正常组比较,LC3、Pink1、Parkin及PHB2蛋白表达均明显提高(
P
<
0.05,
P
<
0.01),USP30蛋白表达显著降低(
P
<
0.01);与模型组比较,LC3、Pink1、Parkin及PHB2蛋白表达均明显降低(
P
<
0.05,
P
<
0.01),USP30蛋白表达显著提高(
P
<
0.01)。
结论
2
柴胡疏肝散治疗功能性消化不良的作用机制可能与抑制Pink1/Parkin信号通路的激活,从而抑制ICCs线粒体过度自噬有关。
Objective
2
To investigate the mechanism of Chaihu Shugansan in the treatment of functional dyspepsia in rats based on mitophagy and PTEN-induced kinase 1 (Pink1)/E3 ubiquitin ligase (Parkin). signaling pathway.
Method
2
According to the principle of random grouping, 40 SD rats were assigned into a normal group, a model group, a Chaihu Shugansan group, and a positive drug (domperidone) group, with 10 rats in each group. The rats in other groups except the normal group received tail-clamping stimulation to replicate the model of functional dyspepsia. After each time of stimulation, the rats in the normal, model, Chaihu Shugansan, and positive drug groups were administrated with normal saline, normal saline, Chaihu Shugansan (4.8 g·kg
-1
), and an aqueous solution of domperidone (4.5 mg·kg
-1
), respectively. After 28 days of modeling, the gastric emptying rate and the small intestine propulsion rate of the rats in each group were measured and the tissue samples were collected. Hematoxylin-eosin (HE) staining was employed for observation of damage in gastric antrum tissue, and transmission electron microscopy (TEM) for ultrastructural observation of gastric interstitial cells of Cajal (ICCs). Immunofluorescence co-localization was adopted to observe the expression of cytochrome c oxidase (COX Ⅳ) and Parkin. Western blot was employed to determine the expression levels of microtubule-associated protein 1, light chain 3 (LC3), and the mitophagy-associated proteins prohibitin2 (PHB2), Pink1, Parkin, and ubiquitin-specific protease 30 (USP30).
Result
2
Compared with the normal group, the modeling decreased the gastric emptying rate and the small intestine propulsion rate
(
P
<
0.05). Compared with the model group, Chaihu Shugansan increased the gastric emptying rate and the small intestine propulsion rate (
P
<
0.05). The results of TEM showed that Chaihu Shugansan reduced the swelling degree of mitochondria in gastric antrum tissue. Compared with the normal group, the modeling increased the fluorescence intensity of Parkin in mitochondria (
P
<
0.01), while such increase can be alleviated by Chaihu Shugansan (
P
<
0.01). Western blotting results showed that compared with the normal group, the modeling up-regulated the protein levels of LC3, Pink1, Parkin, and PHB2 (
P
<
0.05,
P
<
0.01) and down-regulated the protein level of USP30 (
P<
0.01). Compared with the model group, Chaihu Shugansan down-regulated the protein levels of LC3, Pink1, Parkin, and PHB2 (
P
<
0.05,
P
<
0.01) and up-regulated the protein level of USP30
(
P
<
0.01).
Conclusion
2
Chaihu Shugansan may treat functional dyspepsia by blocking the Pink1/Parkin signaling pathway to inhibit excessive mitochondrial autophagy in ICCs.
FORD A C , MAHADEVA S , CARBONE M F , et al . Functional dyspepsia [J]. Lancet , 2020 , 396 ( 10263 ): 1689 - 1702 .
沈少英 , 许丰 . 功能性消化不良病理生理机制及治疗进展 [J]. 现代实用医学 , 2021 , 33 ( 1 ): 138 - 140 .
BLAIR P J , RHEE P L , SANDERS K M , et al . The significance of interstitial cells in neurogastroenterology [J]. J Neurogastroenterol Motil , 2014 , 20 ( 3 ): 294 - 317 .
ZHANG L M , ZENG L J , DENG J , et al . Investigation of autophagy and differentiation of myenteric interstitial cells of Cajal in the pathogenesis of gastric motility disorders in rats with functional dyspepsia [J]. Biotechnol Appl Biochem , 2018 , 65 ( 4 ): 533 - 539 .
SANDERS K M . Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles [J]. Adv Exp Med Biol , 2019 , 1124 : 3 - 46 .
郭璇 , 阳松威 , 姜苏南 , 等 . 舒胃汤对FD肝郁脾虚证模型大鼠胃肠平滑肌Beclin-1、mTOR、Cx43蛋白与mRNA表达的影响 [J]. 中成药 , 2018 , 40 ( 2 ): 270 - 275 .
李莉 , 贾庆玲 , 王煜姣 , 等 . 柴胡疏肝散对功能性消化不良大鼠胃组织线粒体功能及线粒体自噬的影响 [J]. 中国实验方剂学杂志 , 2021 , 27 ( 23 ): 26 - 34 .
肖慧明 , 彭莉莉 . 功能性消化不良的中医治疗综述 [J]. 世界最新医学信息文摘:连续型电子期刊 , 2019 , 19 ( 71 ): 135 - 136,139 .
CHU M , WU I , HO R , et al . Chinese herbal medicine for functional dyspepsia: Systematic review of systematic reviews [J]. Therap Adv Gastroenterol , 2018 , 11 : 1756284818785573 .
白娟 , 刘燕 , 王丹妮 , 等 . 柴胡疏肝散在肝郁证中的作用机制 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 3 ): 199 - 204 .
LIU P , LIN H , XU Y , et al . Frataxin-mediated PINK1-Parkin-dependent mitophagy in hepatic steatosis: The protective effects of quercetin [J]. Mol Nutr Food Res , 2018 , 62 ( 16 ): e1800164 .
KANG J W , HONG J M , LEE S M . Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis [J]. J Pineal Res , 2016 , 60 ( 4 ): 383 - 393 .
王煜姣 , 凌江红 , 张钰琴 , 等 . 疏肝理气法对功能性消化不良大鼠行为学及胃肠动力的影响 [J]. 时珍国医国药 , 2015 , 26 ( 4 ): 999 - 1001 .
卢鹏飞 , 左艇 , 苗明三 . 基于中西医临床病证特点的功能性消化不良动物模型分析 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 18 ): 210 - 215 .
罗高标 , 凌江红 . 柴胡疏肝散对功能性消化不良大鼠胃窦组织中GRP78和c-JNK表达的影响 [J]. 山西中医 , 2019 , 35 ( 5 ): 56 - 58 .
徐叔云 , 汴如濂 , 陈修 . 药理实验方法学 [M]. 3版 . 北京 : 人民卫生出版社 , 2002 : 202 - 204 .
周洲 , 凌江红 , 徐宽 , 等 . 柴胡疏肝散对功能性消化不良大鼠胃排空的促进作用及机制 [J]. 山东医药 , 2017 , 57 ( 37 ): 5 - 8 .
郭璇 , 阳松威 , 徐寅 , 等 . 舒胃汤对功能性消化不良大鼠小肠推进功能及CNP/cGMP信号通路的影响 [J]. 中药新药与临床药理 , 2019 , 30 ( 3 ): 276 - 281 .
吕林 , 王静 , 唐旭东 , 等 . 基于脾主运化水液理论探讨功能性消化不良症状的产生 [J]. 中医杂志 , 2016 , 57 ( 6 ): 470 - 472 .
张介宾 . 景岳全书 [M]. 广州 : 广东科技出版社 , 1984 : 54 .
宁海恩 , 凌江红 , 梁纲 , 等 . 柴胡疏肝散对大鼠胃Cajal间质细胞活性及细胞内钙离子浓度的影响 [J]. 中国中西医结合杂志 , 2016 , 36 ( 9 ): 1091 - 1096
张智 , 凌江红 , 宁海恩 , 等 . 柴胡疏肝散含药血清对大鼠胃Cajal间质细胞增殖及细胞周期的影响 [J]. 世界华人消化杂志 , 2015 , 23 ( 30 ): 4792 - 4799 .
邓静 , 凌江红 , 曾丽君 , 等 . 柴胡疏肝散对功能性消化不良大鼠胃Cajal间质细胞增殖及其超微结构的影响 [J]. 基因组学与应用生物学 , 2017 , 36 ( 4 ): 1410 - 1417 .
曾丽君 , 凌江红 , 邓静 , 等 . 柴胡疏肝散对功能性消化不良大鼠胃窦肌间Cajal间质细胞自噬的影响 [J]. 时珍国医国药 , 2017 , 28 ( 5 ): 1041 - 1044 .
张智 . 柴胡疏肝散对大鼠胃Cajal间质细胞自噬的影响及其机制的研究 [D]. 南宁 : 广西医科大学 , 2016 .
TAN R Q , ZHANG Z , JU J , et al . Effect of Chaihu Shugan powder-contained serum on glutamate-induced autophagy of interstitial cells of cajal in the rat gastric antrum [J]. Evid Based Complement Alternat Med , 2019 , 2019 : 7318616 .
SULKSHANE P , RAM J , THAKUR A , et al . Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia [J]. Redox Biol , 2021 , 45 : 102047 .
MARTINEZ J , MALIREDDI R K , LU Q , et al . Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins [J]. Nat Cell Biol , 2015 , 17 ( 7 ): 893 - 906 .
GONG L , HE J , SUN X , et al . Activation of sirtuin1 protects against ischemia/reperfusion-induced acute kidney injury [J]. Biomed Pharmacother , 2020 , 125 : 110021 .
WEI Y , CHIANG W C , SUMPTER R , et al . Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor [J]. Cell , 2017 , 168 ( 1/2 ): 224 - 238 .
YAN C , GONG L , CHEN L , et al . PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis [J]. Autophagy , 2020 , 16 ( 3 ): 419 - 434 .
SHIBA-FUKUSHIMA K , ARANO T , MATSUMOTO G , et al . Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering [J]. PLoS Genet , 2014 , 10 ( 12 ): e1004861 .
OKATSU K , KOYANO F , KIMURA M , et al . Phosphorylated ubiquitin chain is the genuine Parkin receptor [J]. J Cell Biol , 2015 , 209 ( 1 ): 111 - 128 .
BINGOL B , TEA J S , PHU L , et al . The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy [J]. Nature , 2014 , 510 ( 7505 ): 370 - 375 .
DEOL K K , EYLES S J , STRIETER E R , et al . Quantitative middle-down MS analysis of parkin-mediated ubiquitin chain assembly [J]. J Am Soc Mass Spectrom , 2020 , 31 ( 5 ): 1132 - 1139 .
0
Views
37
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution