浏览全部资源
扫码关注微信
成都中医药大学 药学院 西南特色中药资源国家重点实验室,成都 611137
Published:20 March 2023,
Published Online:07 September 2022,
Received:06 April 2022,
扫 描 看 全 文
钟洪金,任九卓林,张灵迂等.基于氧化石墨烯荧光传感技术对中药海马的鉴定[J].中国实验方剂学杂志,2023,29(06):185-193.
ZHONG Hongjin,REN Jiuzhuolin,ZHANG Lingyu,et al.Identification of Traditional Chinese Medicine Seahorses Using Graphene Oxide-based Fluorescent Sensing Technology[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):185-193.
钟洪金,任九卓林,张灵迂等.基于氧化石墨烯荧光传感技术对中药海马的鉴定[J].中国实验方剂学杂志,2023,29(06):185-193. DOI: 10.13422/j.cnki.syfjx.20221512.
ZHONG Hongjin,REN Jiuzhuolin,ZHANG Lingyu,et al.Identification of Traditional Chinese Medicine Seahorses Using Graphene Oxide-based Fluorescent Sensing Technology[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):185-193. DOI: 10.13422/j.cnki.syfjx.20221512.
目的
2
建立基于氧化石墨烯荧光传感技术鉴定中药海马的方法,为中药鉴定提供一个新的研究思路。
方法
2
在小海马特异性上游引物Ja-F的5'端标记荧光基团FAM作为核酸探针FAM-单链DNA(ssDNA),在下游引物Ja-R的5'端加上RNA聚合酶Ⅱ的识别位点记为Ja-R1,用Ja-F/Ja-R1扩增海马样品,利用体外转录法对扩增产物进行反转录获得小海马ssDNA。取500 nmol·L
-1
FAM-ssDNA 20 μL,90 ℃孵育5 min,逐渐冷却至室温,加入不同体积的氧化石墨烯溶液(100 mg·L
-1
)和三羟甲基氨基甲烷-盐酸(Tris-HCl)缓冲液(pH 7.6,50 mmol·L
-1
),使反应终体积为1 mL,混匀,室温避光放置不同时间后测荧光强度,筛选制备传感器的最佳氧化石墨烯浓度和反应时间。再加入探针互补序列FAM-ssDNA-match溶液,室温放置不同时间后测荧光值,筛选荧光恢复的最适反应时间并检测传感器可行性。向核酸探针-氧化石墨烯溶液中分别加入ddH
2
O和不同浓度的小海马ssDNA进行灵敏度检测,最后根据最佳实验条件对市售海马药材进行检测,验证该方法用于中药材基原鉴定的可行性。
结果
2
构建鉴别小海马的核酸探针-氧化石墨烯生物传感器条件为1 mL反应体积中,10 nmol·L
-1
FAM-ssDNA+12 mg·L
-1
氧化石墨烯溶液,室温避光反应20 min,可彻底淬灭探针荧光。传感器可行性检测显示,当向传感器溶液中加入探针互补序列溶液(终浓度90 nmol·L
-1
),室温反应1 h后,体系的荧光信号明显增强。灵敏度检测显示,该方法能够检测到的小海马ssDNA的最低质量浓度约为10 mg·L
-1
。将该方法用于检测市售海马药材,发现只有小海马样品有明显的荧光信号。
结论
2
该实验建立的氧化石墨烯荧光传感技术可用于中药海马的基原鉴定。
Objective
2
To establish a method for seahorse identification based on graphene oxide fluorescence sensing technology, and to provide a new research idea for identification of traditional Chinese medicine.
Method
2
The fluorophore FAM was labeled at the 5' end of the specificity upstream primer Ja-F of
Hippocampus japonicus
as the nucleic acid probe FAM-ssDNA (single strand DNA). The recognition site of RNA polymerase Ⅱ was added to its specific downstream primer Ja-R as Ja-R1. The seahorse samples were amplified with Ja-F/Ja-R1 primers, and the ssDNA of
H. japonicus
was obtained by reverse transcription of the amplification products using vitro transcription method. The 20 μL nucleic acid probe FAM-ssDNA (500 nmol·L
-1
) was incubated at 90 ℃ for 5 min, and was gradually cooled to room temperature. Different volume of graphene oxide solution (100 mg·L
-1
) and Tris hydroxymethyl amino methane HCl (Tris-HCl) buffer (50 mmol·L
-1
) were added into each probe solution to make a final reaction volume of 1 mL. The fluorescence intensity of each sample was measured after mixing and placing different times at room temperature away from the light. So that the most appropriate graphene oxide concentration and reaction time were screened for constructing the best nucleic acid probe-graphene oxide biosensor. Adding probe complementary sequence FAM-ssDNA-match solution into the nucleic acid probe-graphene oxide solution, the fluorescence intensity of the reaction mixture was measured after being placed different times at room temperature. Therefore, the optimal reaction time of fluorescence recovery was screened and the feasibility of the sensor was tested. The sensitivity was detected via adding ddH
2
O as the blank control and different concentration
H. japonicus
ssDNA into each nucleic acid probe-graphene oxide solution, respectively. Finally, the commercial hippocampal were identified using the optimal experimental condition, and the feasibility of this method for the identification of Chinese medicinal materials was verified.
Result
2
The fluorescence of 1 mL reaction mixture including 10 nmol·L
-1
nucleic acid probe FAM-ssDNA and 12 mg·L
-1
go solution for 20 min at room temperature away from the light could be completely quenched. Feasibility test of the biosensor showed that when probe complementary sequence FAM-ssDNA-match solution (final concentration 90 nmol·L
-1
) was added to the biosensor solution and reacted 1 h reaction at room temperature, the fluorescence signal was significantly enhanced. Sensitivity test showed that the minimum concentration of ssDNA detected by this method was about 10 mg·L
-1
. This method was used to detect commercial seahorses, and only
H. japonicus
samples had obvious fluorescence signal.
Conclusion
2
The graphene oxide-based fluorescent sensing technology could be used for zoological origin survey of commercial hippocampus.
氧化石墨烯荧光传感技术核酸探针海马鉴定单链DNA(ssDNA)
graphene oxide-based fluorescent sensing technologynucleic acid probeseahorseidentificationsingle-stranded DNA
韩新忠.波兰发现低成本生产最薄最坚硬纳米材料石墨烯方法[J].功能材料信息,2013,10(5):105-106.
JUNG J,MACDONALD,ALLAN H.Tight-binding model for grapheme π-bands from maximally localized wannier functions[J].Phys Rev B,2013,87(19):195450-1-195450-10.
RASHEED P A,SANDHYARANI N.Garphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene[J].Sensor Actuat B-Chem,2014,204:777-782.
LU J G,SUN Y M,WEN D Z.Effect of grapheme composite on biological egg protein resistance switching memory properties[J].Nano,2021,16(11):2150134.
WEN J,LI W S, LI J Q,et al.Study on rolling circle amplification of Ebola virus and fluorescence detection based on grapheme oxide[J].Sensor Actuat B-Chem,2016,227:655-659.
LIU Y,DONG X,CHEN P.Biological and chemical sensors based on graphene materials[J].Chem Soc Rev,2012,41(6):2283-2307.
MORALES-NARVÁEZ E,MERKOÇI A.Graphene oxide as an optical biosensing platform[J].Adv Mater,2012,24(25):3298-3308.
WANG C F,WANG Z G,SUN X Y,et al.An ultrasensitive fluorescent aptasensor for detection of cancer marker proteins based on graphene oxide-ssDNA[J].RSC Adv,2018,8(72):41143-41149.
TANG Y F, LIU M X, XU L C, et al.A simple and rapid dual-cycle amplification strategy for microRNA based on grapheme oxide and exonuclease Ⅲ-assisted fluorescence recovery[J].Anal Methods,2018,doi:10.1039.C8AY01106Khttp://dx.doi.org/10.1039.C8AY01106K.
LIY B W,SUN Z Y, ZHANG X,et al.Mechanisms of DNA sensing on grapheme oxide[J].Anal Chem,2013,85(16):7987-7993.
LU C H,YANG H H,ZHU C L,et al.A graphene platform for sensing biomolecules[J].Angew Chem Int Ed,2009,121(26):4879-4881.
HE S J,SONG B,LI D,et al.A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J].Advanced Functional Materials,2010,20(3):453-459.
LU Z,ZHANG L,DENG Y,et al.Graphene oxide for rapid microRNA detection[J].Nanoscale,2012,4(19):5840-5842.
LEE J,PARK I S,JUNG E,et al.Direct, sequence-specific detection of dsDNA based on peptide nucleic acid and graphene oxide without requiring denaturation[J].Biosens Bioelectron,2014,62:140-144.
LU C H,LI J,ZHANG X L,et al.General approach for monitoring peptide-protein interactions based on graphene-peptide complex[J].Anal Chem,2011,83(19):7276-7282.
HE Y,XING X,TANG H,et al.Graphene oxide-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA[J].Small,2013,9(12):2097-2101.
姜利英,肖小楠,周鹏磊,等.基于氧化石墨烯荧光适体传感器的胰岛素检测[J].分析化学,2016,44(2):310-314.
杜佳媛,魏永鹏,刘菲菲,等.氧化石墨烯对环境污染物的吸附行为及吸附机理[J].地球科学进展,2016,31(11):1125-1136.
张中勋,刘霞,刘杨,等.氧化石墨烯修饰壳聚糖药物载体的构建[J].高分子材料科学与工程,2019,35(8):137-143.
彭兰.氧化石墨烯荧光探针用于核酸酶的热动力学分析和药物筛选[D].长沙:湖南大学,2016.
徐成.氧化石墨烯复合纳米材料的制备及其在药物递送和生物成像上的应用[D].长沙:湖南大学,2016.
万德光,裴瑾.论中药品种鉴定在中药质量控制中的地位和作用[J].药学实践杂志,2000,18(5):260-262.
HOU F X,CAO J,WANG X,et al.Specific authentication of Hippocampus based on SNP markers[J].Biochem Syst Ecol,2017,(71):131-136.
王川易,郭宝林,肖培根.中药分子鉴定方法评述[J].中国中药杂志,2011,36(3):237-242.
周敏,樊兰兰,高慧新,等.白花蛇舌草的DNA条形码研究[J].时珍国医国药,2018,29(1):103-106.
徐传林,李会军,李萍,等.川贝母药材分子鉴定方法研究[J].中国药科大学学报,2010,41(3):226-230.
黄娟,李西文,徐文,等.耳草属岭南药材DNA分子鉴定研究[J].世界科学技术—中医药现代化,2016,(8):1401-1407.
徐纲,于超,阳勇,等.不同居群栽培牡丹rDNA ITS区序列分析及鉴别[J].天然产物研究与开发,2009,21(2):225-230,266.
蒋鹏,张瑞,张祚,等.基于SNP的多重位点特异性PCR鉴别不同居群竹节参[J].武汉轻工大学学报,2020,39(4):15-19,31.
张甜甜.正品丹参及山东丹参不同地理居群的DNA分子标记的开发及鉴定[D].烟台:烟台大学,2016.
代红艳.山楂种质资源的分子鉴定及创新研究[D].沈阳:沈阳农业大学,2007.
彭飒.红花种质资源的SRAP分子鉴定及其与品质相关的分子标记研究[D].乌鲁木齐:新疆农业大学, 2006.
付涛,胡仲义,何月秋,等.基于cpDNA条形码鉴定铁皮石斛种质资源[J].核农学报,2017,31(2):255-262.
黄璐琦,郭兰萍,胡娟,等.道地药材形成的分子机制及其遗传基础[J].中国中药杂志,2008,33(20):2303-2308.
邓锋,莫结丽,陈浩桉.采用ISSR分子标记法鉴别道地药材化橘红[J].广东药学院学报,2009,25(5):455-458.
李钟.用RAPD技术鉴别湖南道地药材玉竹[D].长沙:湖南中医学院,2003.
唐晓晶,冯成强,黄璐琦,等.蕲蛇及其混淆品高特异性PCR鉴别[J].药物分析杂志,2006,26(2):152-155.
赵静雪,崔光红,辛敏通,等.金钱白花蛇快速PCR鉴别方法的建立[J].药学学报,2010,45(10):1327-1332.
陈维明,马梅,龚玲,等.基于物种特异性PCR方法的鸡内金真伪鉴别[J].广州中医药大学学报,2015(3):499-503.
刘亚男,华中一,赵玉洋,等.基于DSS标记特异性PCR鉴别冷背药材木槿皮基原植物及其混伪品[J].中国实验方剂学杂志,2022,28(17):133-139.
陈玉春.基于位点特异性PCR技术对中国黄果人参品种的分子鉴定[D].烟台:烟台大学,2021.
李柯帆,索晓雄,李晓兰,等.多重位点特异性PCR同时鉴别酸枣仁及其掺伪品[J].中国实验方剂学杂志,2023,29(2):141-148.
方绍庆,尹伟力,耿金培,等.中国鲎物种特异性鉴定的荧光PCR方法研究[J].动物医学进展,2011,32(11):25-30.
李静宇,孙铭阳,徐世强,等.穿心莲茉莉酸甲酯及非生物胁迫下Real-time PCR内参基因的筛选[J].中国实验方剂学杂志,2022,28(5):133-140.
蒋超,侯静怡,黄璐琦,等.快速PCR方法在金银花真伪鉴别中的应用[J].中国中药杂志,2014,39(19):3668-3672.
0
Views
18
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution