浏览全部资源
扫码关注微信
1.山东中医药大学,济南 250014
2.山东中医药大学 附属医院,济南 250014
Received:21 March 2022,
Published Online:21 June 2022,
Published:05 February 2023
移动端阅览
李志超,薛海鹏,苏辉等.中药单体通过靶向自噬治疗骨质疏松症的研究进展[J].中国实验方剂学杂志,2023,29(03):194-202.
LI Zhichao,XUE Haipeng,SU Hui,et al.Chinese Medicine Monomers in Treating Osteoporosis by Targeting Autophagy: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(03):194-202.
李志超,薛海鹏,苏辉等.中药单体通过靶向自噬治疗骨质疏松症的研究进展[J].中国实验方剂学杂志,2023,29(03):194-202. DOI: 10.13422/j.cnki.syfjx.20221630.
LI Zhichao,XUE Haipeng,SU Hui,et al.Chinese Medicine Monomers in Treating Osteoporosis by Targeting Autophagy: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(03):194-202. DOI: 10.13422/j.cnki.syfjx.20221630.
骨质疏松症是一种常见的代谢性骨疾病,其发病机制与骨内稳态的失衡密切相关。骨内稳态依赖于破骨细胞的骨吸收和间充质系成骨细胞的骨形成之间的精确动态平衡,并涉及一系列复杂且高度调节的步骤。当骨吸收速度快于骨形成时,骨内稳态将被破坏,进而导致骨质疏松。自噬是蛋白质和细胞器降解和循环的基本途径之一,是调节细胞和有机体稳态的基础过程。重要的是,自噬的基本水平存在于所有3种类型的骨相关细胞中。由于自噬的循环特性及持续的骨重塑过程,自噬被认为是骨骼维护的新参与者。新机制的出现带来了新的治疗靶点,通过靶向自噬中的特定调节分子来干预自噬可以调节骨代谢过程。同时,随着中医药在骨质疏松症治疗领域中的研究逐渐深入,人们发现从传统中草药中分离出的中药单体表现出良好的调节自噬治疗骨质疏松症的潜力。基于此,该文讨论了自噬与骨质疏松症的相互关系,并根据最新相关研究进展,总结出22种中药单体通过靶向自噬治疗骨质疏松症的6项不同作用机制,包括靶向自噬增加骨髓间充质干细胞的成骨分化、促进成骨细胞矿化,抑制破骨细胞分化、减少骨相关细胞凋亡、拮抗氧化应激损伤和协调炎症与自噬水平,以期为今后更多中药单体治疗骨质疏松症的有关研究提供参考和思路。
Osteoporosis, a common metabolic bone disease, is caused by the imbalance of bone homeostasis. Bone homeostasis depends on the dynamic balance between bone resorption by osteoclasts and bone matrix formation by mesenchymal lineage osteoblasts and involves a series of complex and highly regulated steps. When bone resorption is faster than bone formation, bone homeostasis will be destroyed, which will lead to osteoporosis. Autophagy is a protein and organelle degradation pathway important for the maintenance of cytoplasmic homeostasis. The basal level of autophagy is present in all the three types of bone cells. Autophagy is a process whereby damaged organelles are recycled and bone remodeling continues, and thus it plays an important role in bone maintenance. Therefore, it is possible to regulate bone metabolism by targeting specific autophagy-related molecules. At the same time, as the research on the treatment of osteoporosis by Chinese medicine advances, it is found that the monomers isolated from traditional Chinese medicinals have the potential of regulating autophagy in the treatment of osteoporosis. Thus, this paper discusses the relationship between autophagy and osteoporosis and summarizes six different mechanisms of 22 Chinese medicine monomers in the treatment of osteoporosis through targeting autophagy: increasing osteogenic differentiation of mesenchymal stem cells, promoting osteoblast mineralization, inhibiting osteoclasts differentiation, reducing apoptosis of bone cells, antagonizing oxidative stress injury, and coordinating inflammation and autophagy levels. The review is expected to provide a reference and ideas for future research on the treatment of osteoporosis by Chinese medicine monomers.
LI Z , XUE H , TAN G , et al . Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (review) [J]. Mol Med Rep , 2021 , 24 ( 5 ): 788 .
中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布 [J]. 中华骨质疏松和骨矿盐疾病杂志 , 2019 , 12 ( 4 ): 317 - 318 .
BALLANE G , CAULEY J A , LUCKEY M M , et al . Worldwide prevalence and incidence of osteoporotic vertebral fractures [J]. Osteoporos Int , 2017 , 28 ( 5 ): 1531 - 1542 .
WAN Y . PPAR γ in bone homeostasis [J]. Trends Endocrinol Metab , 2010 , 21 ( 12 ): 722 - 728 .
BĂDILĂ A E , RĂDULESCU D M , ILIE A , et al . Bone regeneration and oxidative stress: An updated overview [J]. Antioxidants (Basel) , 2022 , 11 ( 2 ): 318 .
SRIVASTAVA R K , SAPRA L . The rising era of "immunoporosis": Role of immune system in the pathophysiology of osteoporosis [J]. J Inflamm Res , 2022 , 15 : 1667 - 1698 .
MENG Y C , LIN T , JIANG H , et al . miR-122 exerts inhibitory effects on osteoblast proliferation/differentiation in osteoporosis by activating the PCP4-mediated JNK pathway [J]. Mol Ther Nucleic Acids , 2020 , doi: 10.1016/j.omtn.2019.11.038 http://dx.doi.org/10.1016/j.omtn.2019.11.038 .
HE J , LI X , WANG Z , et al . Therapeutic anabolic and anticatabolic benefits of natural chinese medicines for the treatment of osteoporosis [J]. Front Pharmacol , 2019 , doi: 10.3389/fphar.2019.01344 http://dx.doi.org/10.3389/fphar.2019.01344 .
SONG S , GUO Y , YANG Y , et al . Advances in pathogenesis and therapeutic strategies for osteoporosis [J]. Pharmacol Ther , 2022 , doi: 10.1016/j.pharmthera.2022.108168 http://dx.doi.org/10.1016/j.pharmthera.2022.108168 .
GUO Y F , SU T , YANG M , et al . The role of autophagy in bone homeostasis [J]. J Cell Physiol , 2021 , 236 ( 6 ): 4152 - 4173 .
PIERREFITE-CARLE V , SANTUCCI-DARMANIN S , BREUIL V , et al . Autophagy in bone: Self-eating to stay in balance [J]. Ageing Res Rev , 2015 , 24 ( Pt B ): 206 - 217 .
NARENDRA D , KANE L A , HAUSER D N , et al . p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy, VDAC1 is dispensable for both [J]. Autophagy , 2010 , 6 ( 8 ): 1090 - 1106 .
FLORENCIO-SILVA R , SASSO G R , SIMÕES M J , et al . Osteoporosis and autophagy: What is the relationship? [J]. Rev Assoc Med Bras (1992), 2017 , 63 ( 2 ): 173 - 179 .
SHEN G , REN H , SHANG Q , et al . Autophagy as a target for glucocorticoid-induced osteoporosis therapy [J]. Cell Mol Life Sci , 2018 , 75 ( 15 ): 2683 - 2693 .
ZUK P A , ZHU M , MIZUNO H , et al . Multilineage cells from human adipose tissue: Implications for cell-based therapies [J]. Tissue Eng , 2001 , 7 ( 2 ): 211 - 228 .
INFANTE A , RODRÍGUEZ C I . Osteogenesis and aging: Lessons from mesenchymal stem cells [J]. Stem Cell Res Ther , 2018 , 9 ( 1 ): 244 .
NUSCHKE A , RODRIGUES M , STOLZ D B , et al . Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation [J]. Stem Cell Res Ther , 2014 , 5 ( 6 ): 140 .
NOLLET M , SANTUCCI-DARMANIN S , BREUIL V , et al . Autophagy in osteoblasts is involved in mineralization and bone homeostasis [J]. Autophagy , 2014 , 10 ( 11 ): 1965 - 1977 .
LIANG X , HOU Z , XIE Y , et al . Icariin promotes osteogenic differentiation of bone marrow stromal cells and prevents bone loss in OVX mice via activating autophagy [J]. J Cell Biochem , 2019 , 120 ( 8 ): 13121 - 13132 .
ZHENG X , YU Y , SHAO B , et al . Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells [J]. Exp Anim , 2019 , 68 ( 4 ): 453 - 463 .
谭亮 , 王小娇 , 肖炜 . 欧前胡素通过提高自噬水平缓解大鼠雌激素缺乏性骨质疏松 [J]. 基础医学与临床 , 2016 , 36 ( 11 ): 1542 - 1547 .
JUNG C H , RO S H , CAO J , et al . mTOR regulation of autophagy [J]. FEBS Lett , 2010 , 584 ( 7 ): 1287 - 1295 .
ZHAO B , PENG Q , POON E H L , et al . Leonurine promotes the osteoblast differentiation of rat BMSCs by activation of autophagy via the PI3K/Akt/mTOR pathway [J]. Front Bioeng Biotechnol , 2021 , doi: 10.3389/fbioe.2021.615191 http://dx.doi.org/10.3389/fbioe.2021.615191 .
XIAO Y , WEI R , YUAN Z , et al . Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis [J]. Am J Transl Res , 2019 , 11 ( 10 ): 6680 - 6690 .
YANG Y H , LI B , ZHENG X F , et al . Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway--implications for the treatment of osteoporosis [J]. Free Radic Biol Med , 2014 , doi: 10.1016/j.freeradbiomed.2014.08.028 http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.028 .
ZHANG Z , LAI Q , LI Y , et al . Acidic pH environment induces autophagy in osteoblasts [J]. Sci Rep , 2017 , doi: 10.1038/srep46161 http://dx.doi.org/10.1038/srep46161 .
ZHENG L , WANG W , NI J , et al . Role of autophagy in tumor necrosis factor- α -induced apoptosis of osteoblast cells [J]. J Investig Med , 2017 , 65 ( 6 ): 1014 - 1020 .
DESELM C J , MILLER B C , ZOU W , et al . Autophagy proteins regulate the secretory component of osteoclastic bone resorption [J]. Dev Cell , 2011 , 21 ( 5 ): 966 - 974 .
姜涛 , 邵敏 , 陈庆真 , 等 . 牛膝甾酮干预SD乳鼠成骨细胞的增殖与分化 [J]. 中国组织工程研究 , 2020 , 24 ( 23 ): 3636 - 3642 .
于冬冬 , 赵丹阳 , 杨鸫祥 . 自噬在葛根素促成骨细胞分化调节中的作用 [J]. 中国医科大学学报 , 2021 , 50 ( 9 ): 779 - 784 .
ZHANG Y , LI M , LIU Z , et al . Arbutin ameliorates glucocorticoid-induced osteoporosis through activating autophagy in osteoblasts [J]. Exp Biol Med (Maywood) , 2021 , 246 ( 14 ): 1650 - 1659 .
INOKI K , KIM J , GUAN K L . AMPK and mTOR in cellular energy homeostasis and drug targets [J]. Annu Rev Pharmacol Toxicol , 2012 , doi: 10.1146/annurev-pharmtox-010611-134537 http://dx.doi.org/10.1146/annurev-pharmtox-010611-134537 .
ZHANG X , HUANG F , CHEN X , et al . Ginsenoside Rg 3 attenuates ovariectomy-induced osteoporosis via AMPK/mTOR signaling pathway [J]. Drug Dev Res , 2020 , 81 ( 7 ): 875 - 884 .
DRAKE M T , CLARKE B L , LEWIECKI E M . The pathophysiology and treatment of osteoporosis [J]. Clin Ther , 2015 , 37 ( 8 ): 1837 - 1850 .
ARAI A , KIM S , GOLDSHTEYN V , et al . Beclin1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation [J]. J Bone Miner Res , 2019 , 34 ( 9 ): 1753 - 1766 .
ZHANG Y , CUI Y , WANG L , et al . Autophagy promotes osteoclast podosome disassembly and cell motility athrough the interaction of kindlin3 with LC3 [J]. Cell Signal , 2020 , doi: 10.1016/j.cellsig.2019.109505 http://dx.doi.org/10.1016/j.cellsig.2019.109505 .
张倩 , 韩婕 , 汤旭磊 . 不同浓度白藜芦醇对破骨细胞分化的影响及自噬的作用 [J]. 中国骨质疏松杂志 , 2020 , 26 ( 4 ): 564 - 569,594 .
KIM C J , SHIN S H , KIM B J , et al . The effects of kaempferol-inhibited autophagy on osteoclast formation [J]. Int J Mol Sci , 2018 , 19 ( 1 ): 125 .
TOWER J . Programmed cell death in aging [J]. Ageing Res Rev , 2015 , 23 ( Pt A ): 90 - 100 .
MARIÑO G , NISO-SANTANO M , BAEHRECKE E H , et al . Self-consumption: The interplay of autophagy and apoptosis [J]. Nat Rev Mol Cell Biol , 2014 , 15 ( 2 ): 81 - 94 .
WANG T , LIU X , HE C . Glucocorticoid-induced autophagy and apoptosis in bone [J]. Apoptosis , 2020 , 25 ( 3/4 ): 157 - 168 .
WANG X Y , GONG L J , HUANG J M , et al . Pinocembrin alleviates glucocorticoid-induced apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway in osteocytes [J]. Eur J Pharmacol , 2020 , doi: 10.1016/j.ejphar.2020.173212 http://dx.doi.org/10.1016/j.ejphar.2020.173212 .
ZHU W , DING W , SHANG X , et al . Fangchinoline promotes autophagy and inhibits apoptosis in osteoporotic rats [J]. Med Sci Monit , 2019 , doi: 10.12659/MSM.912624 http://dx.doi.org/10.12659/MSM.912624 .
YUE C , JIN H , ZHANG X , et al . Aucubin prevents steroid-induced osteoblast apoptosis by enhancing autophagy via AMPK activation [J]. J Cell Mol Med , 2021 , 25 ( 21 ): 10175 - 10184 .
YANG L , LIU S , MU S , et al . Paeoniflorin attenuates dexamethasone-induced apoptosis of osteoblast cells and promotes bone formation via regulating Akt/mTOR/autophagy signaling pathway [J]. Evid Based Complement Alternat Med , 2021 , doi: 10.1155/2021/6623464 http://dx.doi.org/10.1155/2021/6623464 .
NANDY A , LIN L , VELENTZAS P D , et al . The NF- κ B factor relish regulates Atg1 expression and controls autophagy [J]. Cell Rep , 2018 , 25 ( 8 ): 2110 - 2120 .
JIMI E , FUKUSHIMA H . NF- κ B signaling pathways and the future perspectives of bone disease therapy using selective inhibitors of NF- κ B [J]. Clin Calcium , 2016 , 26 ( 2 ): 298 - 304 .
WANG N , XU P , WU R , et al . Timosaponin BII improved osteoporosis caused by hyperglycemia through promoting autophagy of osteoblasts via suppressing the mTOR/NF κ B signaling pathway [J]. Free Radic Biol Med , 2021 , doi: 10.1016/j.freeradbiomed.2021.05.014 http://dx.doi.org/10.1016/j.freeradbiomed.2021.05.014 .
DOMAZETOVIC V , MARCUCCI G , IANTOMASI T , et al . Oxidative stress in bone remodeling: Role of antioxidants [J]. Clin Cases Miner Bone Metab , 2017 , 14 ( 2 ): 209 - 216 .
BAEK K H , OH K W , LEE W Y , et al . Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures [J]. Calcif Tissue Int , 2010 , 87 ( 3 ): 226 - 235 .
COIPEAU P , ROSSET P , LANGONNE A , et al . Impaired differentiation potential of human trabecular bone mesenchymal stromal cells from elderly patients [J]. Cytotherapy , 2009 , 11 ( 5 ): 584 - 594 .
CERVELLATI C , BONACCORSI G , CREMONINI E , et al . Oxidative stress and bone resorption interplay as a possible trigger for postmenopausal osteoporosis [J]. Biomed Res Int , 2014 , doi: 10.1155/2014/569563 http://dx.doi.org/10.1155/2014/569563 .
LI D Y , YU J C , XIAO L , et al . Autophagy attenuates the oxidative stress-induced apoptosis of Mc3T3-E1 osteoblasts [J]. Eur Rev Med Pharmacol Sci , 2017 , 21 ( 24 ): 5548 - 5556 .
YIN X , ZHOU C , LI J , et al . Autophagy in bone homeostasis and the onset of osteoporosis [J]. Bone Res , 2019 , doi: 10.1038/s41413-019-0058-7 http://dx.doi.org/10.1038/s41413-019-0058-7 .
MANOLAGAS S C , PARFITT A M . What old means to bone [J]. Trends Endocrinol Metab , 2010 , 21 ( 6 ): 369 - 374 .
张申尧 , 董克芳 , 王凡 . 红景天苷抵抗骨细胞凋亡的作用和对绝经后骨质疏松患者的影响 [J]. 中国临床药理学杂志 , 2020 , 36 ( 22 ): 3624 - 3629 .
王莹 . 芒果苷对H 2 O 2 诱导的成骨细胞骨形成的作用及分子机制研究 [D]. 南昌 : 江西中医药大学 , 2019 .
ZHANG Q , ZHAO L , SHEN Y , et al . Curculigoside protects against excess-iron-induced bone loss by attenuating Akt-FoxO1-dependent oxidative damage to mice and osteoblastic MC3T3-E1 cells [J]. Oxid Med Cell Longev , 2019 , doi: 10.1155/2019/9281481 http://dx.doi.org/10.1155/2019/9281481 .
SHI Y , LIU X Y , JIANG Y P , et al . Monotropein attenuates oxidative stress via Akt/mTOR-mediated autophagy in osteoblast cells [J]. Biomed Pharmacother , 2020 , doi: 10.1016/j.biopha.2019.109566 http://dx.doi.org/10.1016/j.biopha.2019.109566 .
FLYNN M G , MARKOFSKI M M , CARRILLO A E . Elevated inflammatory status and increased risk of chronic disease in chronological aging: Inflamm-aging or inflamm-inactivity? [J]. Aging Dis , 2019 , 10 ( 1 ): 147 - 156 .
CHANG J , WANG Z , TANG E , et al . Inhibition of osteoblastic bone formation by nuclear factor-kappaB [J]. Nat Med , 2009 , 15 ( 6 ): 682 - 689 .
PARK B K , ZHANG H , ZENG Q , et al . NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF [J]. Nat Med , 2007 , 13 ( 1 ): 62 - 69 .
LIN N Y , BEYER C , GIESSL A , et al . Autophagy regulates TNF- α -mediated joint destruction in experimental arthritis [J]. Ann Rheum Dis , 2013 , 72 ( 5 ): 761 - 768 .
KE D , FU X , XUE Y , et al . IL-17A regulates the autophagic activity of osteoclast precursors through RANKL-JNK1 signaling during osteoclastogenesis in vitro [J]. Biochem Biophys Res Commun , 2018 , 497 ( 3 ): 890 - 896 .
XUE Y , LIANG Z , FU X , et al . IL-17A modulates osteoclast precursors' apoptosis through autophagy-TRAF3 signaling during osteoclastogenesis [J]. Biochem Biophys Res Commun , 2019 , 508 ( 4 ): 1088 - 1092 .
ZHENG H , FENG H , ZHANG W , et al . Targeting autophagy by natural product Ursolic acid for prevention and treatment of osteoporosis [J]. Toxicol Appl Pharmacol , 2020 , doi: 10.1016/j.taap.2020.115271 http://dx.doi.org/10.1016/j.taap.2020.115271 .
MIZUTANI H , ISHIHARA Y , IZAWA A , et al . Lipopolysaccharide of aggregatibacter actinomycetemcomitans up-regulates inflammatory cytokines, prostaglandin E2 synthesis and osteoclast formation in interleukin-1 receptor antagonist-deficient mice [J]. J Periodontal Res , 2013 , 48 ( 6 ): 748 - 756 .
REDLICH K , SMOLEN J S . Inflammatory bone loss: Pathogenesis and therapeutic intervention [J]. Nat Rev Drug Discov , 2012 , 11 ( 3 ): 234 - 250 .
LI X , XU J , DAI B , et al . Targeting autophagy in osteoporosis: From pathophysiology to potential therapy [J]. Ageing Res Rev , 2020 , doi: 10.1016/j.arr.2020.101098 http://dx.doi.org/10.1016/j.arr.2020.101098 .
LIU S , ZHU L , ZHANG J , et al . Anti-osteoclastogenic activity of isoliquiritigenin via inhibition of NF- κ B-dependent autophagic pathway [J]. Biochem Pharmacol , 2016 , doi: 10.1016/j.bcp.2016.03.002 http://dx.doi.org/10.1016/j.bcp.2016.03.002 .
0
Views
32
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution