浏览全部资源
扫码关注微信
1.广西中医药大学,南宁 530200
2.广西医科大学 附属柳州市人民医院,广西壮族自治区卫生健康委员会广西临床疾病生物技术研究 重点实验室,柳州市胃肠道中成药工程技术研究中心,广西 柳州 545006
Published:05 April 2023,
Published Online:22 June 2022,
Received:09 April 2022,
扫 描 看 全 文
陈勇,吴瑞胜,王竟静等.非编码RNA介导TGF-β1/Smads信号通路与肝纤维化及中药活性成分干预研究进展[J].中国实验方剂学杂志,2023,29(07):252-261.
CHEN Yong,WU Ruisheng,WANG Jingjing,et al.Non-coding RNA-mediated TGF-β1/Smads Signaling Pathway and Liver Fibrosis, and Intervention by Active Components of Chinese Medicinal: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(07):252-261.
陈勇,吴瑞胜,王竟静等.非编码RNA介导TGF-β1/Smads信号通路与肝纤维化及中药活性成分干预研究进展[J].中国实验方剂学杂志,2023,29(07):252-261. DOI: 10.13422/j.cnki.syfjx.20221723.
CHEN Yong,WU Ruisheng,WANG Jingjing,et al.Non-coding RNA-mediated TGF-β1/Smads Signaling Pathway and Liver Fibrosis, and Intervention by Active Components of Chinese Medicinal: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(07):252-261. DOI: 10.13422/j.cnki.syfjx.20221723.
肝纤维化是对致使肝脏慢性损伤的一种伤口愈合反应,其病理特征是细胞外基质(ECM)合成和降解失衡,导致ECM在肝内过度沉积。如果不加以干预,可能会发展为肝硬化和肝细胞癌。肝星状细胞(HSC)的激活是导致肝纤维化的中心事件,活化的HSC会转分化为产生ECM蛋白的肌成纤维细胞。促纤维化因子转化生长因子-
β
1
(TGF-
β
1
)对HSC的活化起到诱导作用,TGF-
β
1
/Smads信号通路是重要的促肝纤维化途径之一。非编码RNA(ncRNA)是指基因在转录过程中不编码蛋白质的RNA,在基因转录后环节起着重要调控作用。大量研究表明,肝纤维化发生与ncRNA的异常表达有紧密联系,ncRNA能通过调控TGF-
β
1
信号转导参与HSC活化,进而影响肝纤维化进程。微小RNA(miRNA)介导TGF-
β
1
/Smads信号通路既可以促进肝纤维化,也可发挥抗肝纤维化作用;长链非编码RNA(lncRNA)不仅结合靶基因促进肝纤维化的发展,还通过充当竞争性内源性RNA结合miRNA促进TGF-
β
1
信号转导;环状RNA(circRNA)以海绵作用结合miRNA调控TGF-
β
1
/Smads途径,抑制HSC活化而抗肝纤维化。中药在预防和治疗肝纤维化发挥着重要作用,其含有的活性成分可通过调控miRNA表达抑制TGF-
β
1
/Smads途径,从而改善肝纤维化。该文综述了近年来miRNA、lncRNA和circRNA介导TGF-
β
1
/Smads信号通路在肝纤维化中的作用和机制,并简要概述了中药活性成分通过调控miRNA介导TGF-
β
1
/Smads信号通路抗肝纤维化,为今后肝纤维化临床治疗和新型药物研发提供重要参考。
Liver fibrosis is a wound healing response that occurs in the setting of chronic liver injury and is caused by imbalance in the synthesis and degradation of extracellular matrix (ECM). If left untreated, it can progress to liver cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cell (HSC) is now well established as a central driver of liver fibrosis. The activated HSC will transform into myofibroblasts that produce ECM protein. Transforming growth factor-
β
1
(TGF-
β
1
) can induce the activation of hepatic stellate cell (HSC), and TGF-
β
1
/Smads signaling pathway is one of the important pathways to promote liver fibrosis. Non-coding RNA (ncRNA) does not encode proteins during the transcription but plays an important regulatory role in the post-transcriptional process of genes. Accumulating evidence shows that the occurrence of liver fibrosis is closely related to the abnormal expression of ncRNA which participates in the activation of HSC by regulating TGF-
β
1
signal transduction and then affects the process of liver fibrosis. MiRNA-mediated TGF-
β
1
/Smads signaling pathway can not only promote liver fibrosis but also play a role in anti-fibrosis. Long non-coding RNA (lncRNA) not only promotes the development of liver fibrosis by binding to target genes but also enhances TGF-
β
1
signal transduction by acting as competitive endogenous RNA. circular RNA (circRNA) acts as a ''sponge'' to regulate TGF-
β
1
/Smads pathway, thereby inhibiting HSC activation and exerting the anti-liver fibrosis effect. Chinese medicinal plays an essential part in the prevention and treatment of liver fibrosis, and the active components can inhibit TGF-
β
1
/Smads pathway by regulating the expression of miRNA, thus alleviating liver fibrosis. This article reviews the role and mechanism of miRNA-, lncRNA- and circRNA-mediated TGF-
β
1
/Smads signaling pathway in liver fibrosis and summarizes the anti-liver fibrosis effect of active components of Chinese medicinals by regulating miRNA-mediated TGF-
β
1
/Smads signaling pathway, which can serve as a reference for clinical treatment of liver fibrosis and the development of new drugs.
转化生长因子-β1(TGF-β1)/Smads信号通路非编码RNA肝纤维化肝星状细胞中药活性成分
transforming growth factor-β1 (TGF-β1)/Smads signaling pathwaynon-coding RNAliver fibrosishepatic stellate cellactive components of Chinese medicinal
AYDIN M M, AKÇALI K C. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29(1): 14-21.
BATALLER R, BRENNER D A. Liver fibrosis[J]. J Clin Invest, 2005, 115(2): 209-218.
FRIEDMAN S L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver[J]. Physiol Rev, 2008, 88(1): 125-172.
KITANO M, BLOOMSTON P M. Hepatic stellate cells and microRNAs in pathogenesis of liver fibrosis[J]. J Clin Med, 2016, 5(3):38.
LI D, FRIEDMAN S L. Liver fibrogenesis and the role of hepatic stellate cells: New insights and prospects for therapy[J]. J Gastroenterol Hepatol, 1999, 14(7): 618-633.
ELPEK G. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update[J]. World J Gastroenterol, 2014, 20(23): 7260-7276.
MATTICK J S, MAKUNIN I V. Non-coding RNA[J]. Hum Mol Genet, 2006, doi: 10.1093/hmg/ddl046http://dx.doi.org/10.1093/hmg/ddl046.
FABREGAT I, MORENO-CÀCERES J, SÁNCHEZ A, et al. TGF-β signalling and liver disease[J]. Febs J, 2016, 283(12): 2219-2232.
XU F, LIU C, ZHOU D, et al. TGF-β/Smad pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167.
LEE J H, LEE H, JOUNG Y K, et al. The use of low molecular weight heparin-pluronic nanogels to impede liver fibrosis by inhibition the TGF-β/Smad signaling pathway[J]. Biomaterials, 2011, 32(5): 1438-1445.
DEWIDAR B, MEYER C, Dooley S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8(11): 1419.
GOVINDEN R, BHOOLA K D. Genealogy, expression, and cellular function of transforming growth factor-beta[J]. Pharmacol Ther, 2003, 98(2): 257-265.
AIMAITI Y, YUSUFUKADIER M, LI W, et al. TGF-β1 signaling activates hepatic stellate cells through Notch pathway[J]. Cytotechnology, 2019, 71(5): 881-891.
KIM K K, SHEPPARD D, CHAPMAN H A. TGF-β1 signaling and tissue fibrosis[J]. Cold Spring Harb Perspect Biol, 2018, 10(4): a022293.
LANG Q, LIU Q, XU N, et al. The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats[J]. Biochem Biophys Res Commun, 2011, 409(3): 448-453.
YAN X, LIU Z, CHEN Y. Regulation of TGF-beta signaling by Smad7[J]. Acta Biochim Biophys Sin (Shanghai), 2009, 41(4): 263-272.
FRIEDMAN S L. Mechanisms of hepatic fibrogenesis[J].Gastroenterology, 2008, 134(6): 1655-1669.
WANG X, HE Y, MACKOWIAK B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70(4): 784-795.
MAUBACH G, LIM M C, CHEN J, et al. miRNA studies in in vitro and in vivo activated hepatic stellate cells[J]. World J Gastroenterol, 2011, 17(22): 2748-2773.
JIANG X P, AI W B, WAN L Y, et al. The roles of microRNA families in hepatic fibrosis[J]. Cell Biosci, 2017, 7: 34.
EZHILARASAN D. MicroRNA interplay between hepatic stellate cell quiescence and activation[J]. Eur J Pharmacol, 2020, 885: 173507.
HUANG C F, SUN C C, ZHAO F, et al. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis[J]. J Gastroenterol, 2015, 50(4): 480-490.
LI W, YU X, CHEN X, et al. HBV induces liver fibrosis via the TGF-β1/miR-21-5p pathway[J]. Exp Ther Med, 2021, 21(2): 169.
ZHU J, ZHANG Z, ZHANG Y, et al. MicroRNA-212 activates hepatic stellate cells and promotes liver fibrosis via targeting Smad7[J]. Biochem Biophys Res Commun, 2018, 496(1): 176-183.
ZHU B, WEI X X, WANG T B, et al. Increased miR-16 expression induced by hepatitis C virus infection promotes liver fibrosis through downregulation of hepatocyte growth factor and Smad7[J]. Arch Virol, 2015, 160(8): 2043-2050.
YU F, GUO Y, CHEN B, et al. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7[J]. Lab Invest, 2015, 95(7): 781-789.
HUANG Q, ZHANG X, BAI F, et al. Methyl helicterte ameliorates liver fibrosis by regulating miR-21-mediated ERK and TGF-β1/Smads pathways[J]. Int Immunopharmacol, 2019, 66: 41-51.
SONG L Y, MA Y T, WU C F, et al. MicroRNA-195 activates hepatic stellate cells in vitro by targeting smad7[J]. Biomed Res Int, 2017, 2017: 1945631.
马玉桃,何阳,孟佩佩,等. 微小RNA-195调控转化生长因子-β/Smad信号通路影响肝纤维化机制研究[J]. 中国临床药理学杂志,2017,33(20):2035-2038.
ZHOU Q Y, YANG H M, LIU J X, et al. MicroRNA-497 induced by clonorchis sinensis enhances the TGF-β/Smad signaling pathway to promote hepatic fibrosis by targeting Smad7[J]. Parasit Vectors, 2021, 14(1): 472.
PAN Y, WANG J, HE L, et al. MicroRNA-34a promotes emt and liver fibrosis in primary biliary cholangitis by regulating TGF-β1/smad pathway[J]. J Immunol Res, 2021, 2021: 6890423.
WALTON K L, JOHNSON K E, HARRISON C A. Targeting TGF-β mediated smad signaling for the prevention of fibrosis[J]. Front Pharmacol, 2017, 8: 461.
MA L, MA J, OU H L. MicroRNA‑219 overexpression serves a protective role during liver fibrosis by targeting tumor growth factor β receptor 2[J]. Mol Med Rep, 2019, 19(3): 1543-1550.
LAKNER A M, STEUERWALD N M, WALLING T L, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis[J]. Hepatology, 2012, 56(1): 300-310.
YANG X, DAN X, MEN R, et al. MiR-142-3p blocks TGF-β-induced activation of hepatic stellate cells through targeting TGFβRI[J]. Life Sci, 2017, 187: 22-30.
TU X, ZHANG H, ZHANG J, et al. MicroRNA-101 suppresses liver fibrosis by targeting the TGF-β signalling pathway[J]. J Pathol, 2014, 234(1): 46-59.
WANG Y, DU J, NIU X, et al. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2[J]. Cell Death Dis, 2017, 8(5): e2792.
YU F, CHEN B, FAN X, et al. Epigenetically-regulated microrna-9-5p suppresses the activation of hepatic stellate cells via TGFBR1 and TGFBR2[J]. Cell Physiol Biochem, 2017, 43(6): 2242-2252.
LIANG C, BU S, FAN X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3[J]. Cell Biochem Funct, 2016, 34(5): 326-333.
KHANIZADEH S, RAVANSHAD M, HOSSEINI S, et al. Blocking of Smad4 expression by shrna effectively inhibits fibrogenesis of human hepatic stellate cells[J]. Gastroenterol Hepatol Bed Bench, 2015, 8(4): 262-269.
FEILI X, WU S, YE W, et al. MicroRNA-34a-5p inhibits liver fibrosis by regulating TGF-β1/Smad3 pathway in hepatic stellate cells[J]. Cell Biol Int, 2018, 42(10): 1370-1376.
HE Y, HUANG C, SUN X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting Smad4[J]. Cell Signal, 2012, 24(10): 1923-1930.
ZHU D, HE X, DUAN Y, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum[J]. Parasit Vectors, 2014, 7: 148.
ZOU Y, CAI Y, LU D, et al. MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGF-β1 and lipopolysaccharide[J]. Cell Signal, 2017, 39: 1-8.
TU X, ZHENG X, LI H, et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J]. Toxicol Sci, 2015, 146(1): 157-169.
MA L, ZENG Y, WEI J, et al. Knockdown of LOXL1 inhibits TGF-β1-induced proliferation and fibrogenesis of hepatic stellate cells by inhibition of Smad2/3 phosphorylation[J]. Biomed Pharmacother, 2018, 107: 1728-1735.
MA L, LIU J, XIAO E, et al. MiR-15b and miR-16 suppress TGF-β1-induced proliferation and fibrogenesis by regulating LOXL1 in hepatic stellate cells[J]. Life Sci, 2021, 270: 119144.
HU G, NIU F, HUMBURG B A, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis[J]. Oncotarget, 2018, 9(26): 18648-18663.
ZHOU C, YORK S R, CHEN J Y, et al. Long noncoding RNAs expressed in human hepatic stellate cells form networks with extracellular matrix proteins[J]. Genome Med,2016,8(1):31.
YAO J, LIN C, JIANG J, et al. lncRNA-HEIM facilitated liver fibrosis by up-regulating TGF-β expression in long-term outcome of chronic hepatitis B[J]. Front Immunol, 2021,12:666370.
WU Y, LIU X, ZHOU Q, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion[J]. Toxicol Appl Pharmacol, 2015, 289(2): 163-176.
JIANG R, ZHOU Y, WANG S, et al. Nicotinamide riboside protects against liver fibrosis induced by CCl4 via regulating the acetylation of Smads signaling pathway[J]. Life Sci, 2019, 225: 20-28.
ZHANG K, HAN X, ZHANG Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGF-β and Notch pathways[J]. Nat Commun, 2017, 8(1): 144.
ZHANG K, HAN Y, HU Z, et al. SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker[J]. Theranostics, 2019, 9(12): 3622-3638.
BIAN E B, XIONG Z G, LI J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions[J]. J Cell Physiol, 2019,234(3):2194-2203.
朱海东,吕长坤,马菲菲. 牛磺酸上调基因1(TUG1)对肝纤维化的作用及其机制[J]. 中国应用生理学杂志,2021,37(6):616-621,637.
HAN X, HONG Y, ZHANG K. TUG1 is involved in liver fibrosis and activation of HSCs by regulating miR-29b[J]. Biochem Biophys Res Commun, 2018,503(3):1394-1400.
FU N, NIU X, WANG Y, et al. Role of lncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis[J]. Discov Med, 2016, 22(119): 29-42.
ZHU J, LUO Z, PAN Y, et al. H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes[J]. J Cell Physiol, 2019, 234(6): 9698-9710.
LI Y, LIU P, WEI F. Long non‑coding RNA MBI‑52 inhibits the development of liver fibrosis by regulating the microRNA‑466g/smad4 signaling pathway[J]. Mol Med Rep, 2022, 25(1): 33.
YANG C, YUAN W, YANG X, et al. circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression[J]. Mol Cancer, 2018, 17(1): 19.
CHIEN Y, TSAI P H, LAI Y H, et al. circularRNA as novel biomarkers in liver diseases[J]. J Chin Med Assoc, 2020, 83(1): 15-17.
ZHOU Y, LV X, QU H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes[J]. Hepatol Res, 2019, 49(3): 324-334.
GHAFOURI-FARD S, KHOSHBAKHT T, BAHRANIAN A, et al. circMTO1: A circular RNA with roles in the carcinogenesis[J]. Biomed Pharmacother, 2021, 142: 112025.
WANG W, DONG R, GUO Y, et al. circMTO1 inhibits liver fibrosis via regulation of miR-17-5p and Smad7[J]. J Cell Mol Med, 2019, 23(8): 5486-5496.
BU F T, ZHU Y, CHEN X, et al. Circular RNA circPSD3 alleviates hepatic fibrogenesis by regulating the miR-92b-3p/Smad7 axis[J]. Mol Ther Nucleic Acids, 2021, 23: 847-862.
SONG L, CHEN T Y, ZHAO X J, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-β1/Smads signalling[J]. Br J Pharmacol, 2019, 176(11): 1619-1634.
WANG Y, YANG F, XUE J, et al. Antischistosomiasis liver fibrosis effects of chlorogenic acid through IL-13/miR-21/Smad7 signaling interactions in vivo and in vitro[J]. Antimicrob Agents Chemother, 2017, 61(2): e01347-16.
YANG F, LUO L, ZHU Z D, et al. Chlorogenic acid inhibits liver fibrosis by blocking the miR-21-regulated TGF-β1/Smad7 signaling pathway in vitro and in vivo[J]. Front Pharmacol, 2017, 8: 929.
ZHOU X, XIONG J, LU S, et al. Inhibitory effect of corilagin on miR-21-regulated hepatic fibrosis signaling pathway[J]. Am J Chin Med, 2019, 47(7): 1541-1569.
ABDELHAMID A M, SELIM A, ZAAFAN M A. The hepatoprotective effect of piperine against thioacetamide-induced liver fibrosis in mice: The involvement of miR-17 and TGF-β/Smads pathways[J]. Front Mol Biosci, 2021, 8: 754098.
SONG L Y, MA Y T, FANG W J, et al. Inhibitory effects of oxymatrine on hepatic stellate cells activation through TGF-β/miR-195/Smad signaling pathway[J]. BMC Complement Altern Med, 2019, 19(1): 138.
CUIQIONG W, CHAO X, XINLING F, et al. Schisandrin B suppresses liver fibrosis in rats by targeting miR-101-5p through the TGF-β signaling pathway[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 473-478.
ZHAO X, YANG Y, YU H, et al. Polydatin inhibits ZEB1-invoked epithelial-mesenchymal transition in fructose-induced liver fibrosis[J]. J Cell Mol Med, 2020, 24(22): 13208-13222.
GUO X X, YANG W N, DONG B S, et al. Glycyrrhetinic acid-induced miR-663a alleviates hepatic stellate cell activation by attenuating the TGF-β/Smad signaling pathway[J]. Evid Based Complement Alternat Med, 2020, 2020:3156267.
宋囡,曹慧敏,陈丝,等. 绞股蓝皂苷调控长链非编码RNA TUG1/miR-26a干扰线粒体凋亡对ApoE(-/-)AS小鼠肝脏脂质沉积的影响及机制研究[J]. 天然产物研究与开发,2021,33(7):1178-1185.
XIA S, WANG Z, CHEN L, et al. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal[J]. Biochem Pharmacol, 2021,192:114730.
周玉平,杨萍,唐春兰,等. 黄芪总皂苷调节环状RNA34116表达阻止肝纤维化进展[J]. 温州医科大学学报,2019,49(4):263-266.
RIAZ F, LI D. Non-coding RNA associated competitive endogenous RNA regulatory network: Novel therapeutic approach in liver fibrosis[J]. Curr Gene Ther,2019,19(5):305-317.
0
Views
24
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution