浏览全部资源
扫码关注微信
北京中医药大学 生命科学学院,北京 102488
Published:20 March 2023,
Published Online:29 November 2022,
Received:29 August 2022,
扫 描 看 全 文
刘姣,杨阳,何悦双等.基于SIRT1/FoxO1通路探究小檗碱抑制卵巢颗粒细胞凋亡与自噬的调节机制[J].中国实验方剂学杂志,2023,29(06):79-87.
LIU Jiao,YANG Yang,HE Yueshuang,et al.Regulatory Mechanism of Berberine in Inhibiting Apoptosis and Autophagy in Ovarian Granulosa Cells Based on SIRT1/FoxO1 Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):79-87.
刘姣,杨阳,何悦双等.基于SIRT1/FoxO1通路探究小檗碱抑制卵巢颗粒细胞凋亡与自噬的调节机制[J].中国实验方剂学杂志,2023,29(06):79-87. DOI: 10.13422/j.cnki.syfjx.20230104.
LIU Jiao,YANG Yang,HE Yueshuang,et al.Regulatory Mechanism of Berberine in Inhibiting Apoptosis and Autophagy in Ovarian Granulosa Cells Based on SIRT1/FoxO1 Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(06):79-87. DOI: 10.13422/j.cnki.syfjx.20230104.
目的
2
通过观察小檗碱(BBR)对卵巢颗粒细胞衰老的影响,探究其保护作用及调节机制。
方法
2
应用H
2
O
2
诱导建立人卵巢颗粒样肿瘤(KGN)细胞衰老模型;设置空白组、模型组、BBR高剂量(1 μmol·L
-1
)组和BBR低剂量(0.5 μmol·L
-1
)组,模型组与BBR组加入浓度为10 μmol·L
-1
H
2
O
2
,孵育40 min。通过细胞增殖与活性检测(CCK-8)分析检测BBR对KGN细胞增殖的影响;通过
β
-半乳糖苷酶染色检测BBR对KGN细胞衰老状态的影响;应用流式细胞术检测BBR对KGN细胞凋亡和ROS含量的影响;实时荧光定量聚合酶链式反应(Real-time PCR)检测BBR对KGN细胞抗凋亡蛋白B细胞淋巴瘤-2(Bcl-2)/促凋亡蛋白Bcl-2相关X蛋白(Bax)比值、胱天蛋白酶-3(Caspase-3)、叉头框转录因子O1(FoxO1)及过氧化氢酶(CAT)mRNA表达的影响;蛋白免疫印迹法(Western blot)检测BBR对KGN细胞沉默信息调节因子1(SIRT1)、超氧化物歧化酶2(SOD2)、c-Jun氨基末端激酶(JNK)、FoxO1、自噬相关蛋白微管相关蛋白轻链3Ⅱ(LC3BⅡ)、自噬关键分子酵母Atg6(Beclin-1)及泛素结合蛋白p62蛋白表达的影响。
结果
2
H
2
O
2
诱导40 min后,与空白组比较,模型组细胞增殖率显著下降(
P
<
0.01);与模型组比较,BBR干预组细胞增殖率明显上升(
P
<
0.05);
β
-半乳糖苷酶染色结果显示,与空白组比较,模型组细胞呈现明显的衰老状态(
P
<
0.01),BBR干预组细胞衰老情况较模型组显著降低(
P
<
0.01);流式细胞术检测显示,与空白组比较,模型组细胞凋亡率显著上升(
P
<
0.01),BBR干预组细胞凋亡率较模型组明显降低(
P
<
0.05);同时,与空白组比较,模型组ROS含量显著增加(
P
<
0.01);与模型组比较,BBR干预组细胞ROS含量显著降低(
P
<
0.01);Real-time PCR结果显示,与空白组比较,模型组KGN细胞CAT、Bcl-2/Bax mRNA表达明显降低,Caspase-3与FoxO1 mRNA表达明显增加(
P
<
0.05);与模型组比较,BBR干预后KGN细胞CAT与Bcl-2/Bax mRNA表达明显增加(
P
<
0.05),Caspase-3与FoxO1 mRNA表达较模型组明显降低(
P
<
0.05)。Western blot结果显示,与空白组比较,模型组SIRT1、SOD2及p62蛋白水平显著降低(
P
<
0.01),JNK、FoxO1、LC3BⅡ与Beclin-1蛋白水平明显升高(
P
<
0.05);BBR干预后,SIRT1、SOD2及p62蛋白水平较模型组显著增加(
P
<
0.01),JNK、FoxO1、LC3BⅡ与Beclin-1蛋白水平较模型组明显降低(
P
<
0.05)。
结论
2
BBR具有抑制卵巢颗粒细胞衰老效应,其机制与通过SIRT1/FoxO1通路介导抑制细胞凋亡与自噬有关。
Objective
2
To investigate the protective effect and regulatory mechanism of berberine (BBR) against the senescence of ovarian granulosa cells.
Method
2
A cell senescence model in the human ovarian granulosa-like tumor (KGN) cell line was induced by H
2
O
2
. A control group, a model group, and high-dose (1 μmol·L
-1
) and low-dose (0.5 μmol·L
-1
) BBR groups were set up. The cells in the model group and the BBR groups were incubated with 10 μmol·L
-1
H
2
O
2
for 40 min. The effect of BBR on KGN cell proliferation was detected by cell counting kit-8 (CCK-8) assay. The effect of BBR on the senescence of KGN cells was detected by
β
-galactosidase staining. The effects of BBR on the apoptosis and ROS content of KGN cells were detected by flow cytometry. The effects of BBR on the mRNA expression of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific protease-3 (Caspase-3), forkhead transcription factor O1 (FoxO1), and catalase (CAT) was detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). Western blot was used to detect the effects of BBR on protein expression of silent information regulator1 (SIRT1), superoxide dismutase 2 (SOD2), c-Jun N-terminal kinase (JNK), FoxO1, autophagy-associated protein microtubule-associated protein light chain 3Ⅱ (LC3BⅡ), mammalian ortholog of yeast Atg6 (Beclin-1), and ubiquitin-binding protein p62.
Result
2
After H
2
O
2
induction for 40 min, the cell proliferation rate of the model group decreased compared with that of the control group (
P
<
0.01), and the cell proliferation rates of the BBR groups increased compared with that of the model group (
P
<
0.05). The results of
β
-galactosidase staining showed that the cells of the model group showed significant senescence compared with those of the control group (
P
<
0.01), and the cellular senescence in the BBR groups was reduced compared with that of the model group (
P
<
0.01). As revealed by flow cytometry, compared with the control group, the model group showed increased apoptosis rate (
P
<
0.01), and compared with the model group, BBR groups showed decreased apoptosis rates (
P
<
0.05). Meanwhile, the ROS content in the model group increased compared with that in the control group (
P
<
0.01), and compared with the model group, the BBR groups showed reduced cellular ROS content (
P
<
0.01). The Real-time PCR results showed that compared with the control group, the model group showed decreased mRNA expression of CAT and Bcl-2/Bax in KGN cells and increased mRNA expression of Caspase-3 and FoxO1 (
P
<
0.05), and compared with the model group, the BBR groups showed increased mRNA expression of CAT and Bcl-2/Bax (
P
<
0.05) and reduced mRNA expression of Caspase-3 and FoxO1 in KGN cells (
P
<
0.05). As revealed by Western blot results, SIRT1, SOD2, and p62 protein levels decreased in the model group compared with those in the control group (
P
<
0.01), and JNK FoxO1, LC3BⅡ, and Beclin-1 protein levels increased (
P
<
0.05). After BBR intervention, SIRT1, SOD2, and p62 protein levels increased (
P
<
0.01), and JNK, FoxO1, LC3BⅡ, and Beclin-1 protein levels decreased compared with those in the model group (
P
<
0.05).
Conclusion
2
BBR has an inhibitory effect on ovarian granulosa cell senescence, and the mechanism is related to the inhibition of apoptosis and autophagy mediated by the SIRT1/FoxO1 pathway.
小檗碱卵巢颗粒细胞氧化损伤凋亡自噬细胞沉默信息调节因子1(SIRT1)/叉头框转录因子O1(FoxO1)信号通路
berberineovarian granulosa cellsoxidative damageapoptosisautophagysilent information regulator1 (SIRT1)/forkhead transcription factor O1 (FoxO1) signaling pathway
KOVANCI E,SCHUTT A K.Premature ovarian failure: Clinical presentation and treatment[J].Obstet Gynecol Clin North Am,2015,42(1):153-161.
KAWAI T,RICHARDS J S,SHIMADA M.Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development[J].Commun Biol,2021,4(1):1334.
SREERANGARAJA URS D B,WU W H,KOMRSKOVA K,et al.Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility[J].Int J Mol Sci,2020,21(10):3592.
TANG X,DONG H,FANG Z,et al.Ubiquitin-like modifier 1 ligating enzyme 1 relieves cisplatin-induced premature ovarian failure by reducing endoplasmic reticulum stress in granulosa cells[J].Reprod Biol Endocrinol,2022,20(1):84.
YADAV A K,YADAV P K,CHAUDHARY G R,et al.Autophagy in hypoxic ovary[J].Cell Mol Life Sci,2019,76(17):3311-3322.
BRAS M,QUEENAN B,SUSIN S A.Programmed cell death via mitochondria: Different modes of dying[J].Biochemistry (Mosc),2005,70(2):231-239.
DADAKHUJAEV S,JUNG E J,NOH H S,et al.Interplay between autophagy and apoptosis in TrkA-induced cell death[J].Autophagy,2009,5(1):103-105.
FILOMENI G,DE ZIO D,CECCONI F.Oxidative stress and autophagy: The clash between damage and metabolic needs[J].Cell Death Differ,2015,22(3):377-388.
XU C,WANG L,FOZOUNI P,et al.SIRT1 is downregulated by autophagy in senescence and ageing[J].Nat Cell Biol,2020,22(10):1170-1179.
LUO G,JIAN Z,ZHU Y,et al.Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress[J].Int J Mol Med,2019,43(5):2033-2043.
MICHAN S,SINCLAIR D.Sirtuins in mammals: Insights into their biological function[J].Biochem J,2007,404(1):1-13.
MEI Z G,HUANG Y G,FENG Z T,et al.Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FoxO1 signaling pathway[J].Aging (Albany NY),2020,12(13):13187-13205.
DING C,ZOU Q,WANG F,et al.HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FoxO1 signaling pathway[J].Cell Physiol Biochem,2018,45(4):1316-1332.
LIM C J,LEE Y M,KANG S G,et al.Aquatide activation of SIRT1 reduces cellular senescence through a SIRT1-FoxO1-autophagy axis[J].Biomol Ther (Seoul),2017,25(5):511-518.
IMENSHAHIDI M,HOSSEINZADEH H.Berberis vulgaris and berberine: An update review[J].Phytother Res,2016,30(11):1745-1764.
WANG K,FENG X,CHAI L,et al.The metabolism of berberine and its contribution to the pharmacological effects[J].Drug Metab Rev,2017,49(2):139-157.
ZHANG N,LIU X,ZHUANG L,et al.Berberine decreases insulin resistance in a PCOS rats by improving GLUT4: Dual regulation of the PI3K/Akt and MAPK pathways[J].Regul Toxicol Pharmacol,2020,110:104544.
REDDY P,LIU L,ADHIKARI D,et al.Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool[J].Science,2008,319(5863):611-613.
KRANC W,BRAZERT M,CELICHOWSKI P,et al.'Heart development and morphogenesis' is a novel pathway for human ovarian granulosa cell differentiation during long‑term in vitro cultivation-a microarray approach[J].Mol Med Rep,2019,19(3):1705-1715.
GHAHREMANI-NASAB M,GHANBARI E,JAHANBANI Y,et al.Premature ovarian failure and tissue engineering[J].J Cell Physiol,2020,235(5):4217-4226.
THOMAS F H,VANDERHYDEN B C.Oocyte-granulosa cell interactions during mouse follicular development: Regulation of kit ligand expression and its role in oocyte growth[J].Reprod Biol Endocrinol,2006,4:19.
RODGERS R J,LAVRANOS T C,RODGERS H F,et al.The physiology of the ovary: Maturation of ovarian granulosa cells and a novel role for antioxidants in the corpus luteum[J].J Steroid Biochem Mol Biol,1995,53(1-6):241-246.
BRAND J S,ONLAND-MORET N C,EIJKEMANS M J,et al.Diabetes and onset of natural menopause: Results from the European prospective investigation into cancer and nutrition[J].Hum Reprod,2015,30(6):1491-1498.
AKOGULLARI D,ULUER E T,VATANSEVER H S.Investigation of the relation between follicular atresia and granulosa cells in terms of cell death mechanisms in premature ovarian failure model[Z].The 2nd International Cell Death Research Congress,2018,doi:10.3390/proceedings2251529.
ALMEIDA C P,FERREIRA M,SILVEIRA C O,et al.Clinical correlation of apoptosis in human granulosa cells-A review[J].Cell Biol Int,2018,42(10):1276-1281.
LIU T,HAN Y,ZHOU T,et al.Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa[J].Aging (Albany NY),2019,11(18):7880-7898.
JACOB K D,NOREN HOOTEN N,TRZECIAK A R,et al.Markers of oxidant stress that are clinically relevant in aging and age-related disease[J].Mech Ageing Dev,2013,134(3/4):139-157.
LIGUORI I,RUSSO G,CURCIO F,et al.Oxidative stress, aging, and diseases[J].Clin Interv Aging,2018,13:757-772.
WANG G,ZHANG T,SUN W,et al.Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma[J].Free Radic Biol Med,2017,106:24-37.
EISENBERG-LERNER A,BIALIK S,SIMON H U,et al.Life and death partners: Apoptosis, autophagy and the cross-talk between them[J].Cell Death Differ,2009,16(7):966-975.
CHOI J Y,JO M W,LEE E Y,et al.The role of autophagy in follicular development and atresia in rat granulosa cells[J].Fertil Steril,2010,93(8):2532-2537.
SHEN M,JIANG Y,GUAN Z,et al.Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J].Autophagy,2017,13(8):1364-1385.
DAN DUNN J,ALVAREZ L A,ZHANG X,et al.Reactive oxygen species and mitochondria: A nexus of cellular homeostasis[J].Redox Biol,2015,6:472-485.
HASSAN M,WATARI H,ABUALMAATY A,et al.Apoptosis and molecular targeting therapy in cancer[J].Biomed Res Int,2014,2014:150845.
ADAMS J M,CORY S.Bcl-2-regulated apoptosis: Mechanism and therapeutic potential[J].Curr Opin Immunol,2007,19(5):488-496.
BERNARD A,CHEVRIER S,BELTJENS F,et al.Cleaved Caspase-3 transcriptionally regulates angiogenesis-promoting chemotherapy resistance[J].Cancer Res,2019,79(23):5958-5970.
YANG Z,KLIONSKY D J.Eaten alive: A history of macroautophagy[J].Nat Cell Biol,2010,12(9):814-822.
TAN Y Q,ZHANG J,ZHOU G.Autophagy and its implication in human oral diseases[J].Autophagy,2017,13(2):225-236.
CHOI J,JO M,LEE E,et al.Akt is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia[J].Reproduction,2014,147(1):73-80.
WILKINSON D S,JARIWALA J S,ANDERSON E,et al.Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy[J].Mol Cell,2015,57(1):55-68.
KABEYA Y,MIZUSHIMA N,UENO T,et al.LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J].EMBO J,2000,19(21):5720-5728.
KAUR S,CHANGOTRA H.The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders[J].Biochimie,2020,175:34-49.
HILL S M,WROBEL L,ASHKENAZI A,et al.VCP/p97 regulates Beclin-1-dependent autophagy initiation[J].Nat Chem Biol,2021,17(4):448-455.
HE C,KLIONSKY D J.Regulation mechanisms and signaling pathways of autophagy[J].Annu Rev Genet,2009,43:67-93.
KOMATSU M,WAGURI S,KOIKE M,et al.Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice[J].Cell,2007,131(6):1149-1163.
ZHANG H,ZHANG Y,ZHU X,et al.DEAD Box protein 5 inhibits liver tumorigenesis by stimulating autophagy via interaction with p62/SQSTM1[J].Hepatology,2019,69(3):1046-1063.
REN H,SHAO Y,WU C,et al.Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway[J].Mol Cell Endocrinol,2020,500:110628.
ZHANG M,ZHANG Q,HU Y,et al.miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation[J].Cell Death Dis,2017,8(10):e3088.
SUI X,KONG N,YE L,et al.p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents[J].Cancer Lett,2014,344(2):174-179.
SUZUKI M,BANDOSKI C,BARTLETT J D.Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling[J].Free Radic Biol Med,2015,89:369-378.
ZHOU Y Y,LI Y,JIANG W Q,et al.MAPK/JNK signalling: A potential autophagy regulation pathway [J].Biosci Rep,2015,35(3):e00199.
0
Views
23
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution