JIA Moran,SHAO Yiqun,SHENG Dongya,et al.Plumbagin Induces Ferroptosis Through Nrf-2/Keap1 Signaling Pathway in Bladder Cancer Cells[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):39-44.
JIA Moran,SHAO Yiqun,SHENG Dongya,et al.Plumbagin Induces Ferroptosis Through Nrf-2/Keap1 Signaling Pathway in Bladder Cancer Cells[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):39-44. DOI: 10.13422/j.cnki.syfjx.20230323.
Plumbagin Induces Ferroptosis Through Nrf-2/Keap1 Signaling Pathway in Bladder Cancer Cells
To explore the mechanism of plumbagin as a novel ferroptosis inducer in bladder cancer inhibition.
Method
2
Bladder cancer T24 cells were used in this study. The effect of different concentrations of plumbagin (0.1, 1, 2, 3, 6, 12, 24, 48 μmol·L
-1
) on the viability of T24 cells was detected by cell counting kit-8 (CCK-8). The effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on the apoptosis of T24 cells was detected by annexin V-fluorescein isothiocyanate (Annexin V FITC)/PI apoptosis kit. Different inhibitors (ferroptosis inhibitor Fer-1, apoptosis inhibitor VAD, and necroptosis inhibitor Nec-1) were used in combination with plumbagin (6 μmol·L
-1
). Reactive oxygen species (ROS) fluorescent probe (DCFH-DA), malonaldehyde (MDA), and glutathione (GSH) kits were used to detect the effects of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on the level of ROS and the content of MDA and GSH in T24 cells, respectively. The effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on peroxide levels in T24 cells was detected by C11-BODIPY fluorescent probe. Western blot was used to detect the effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on the protein expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), nuclear factor E
2
-related factor-2 (Nrf-2), and Kelch-like ECH-associated protein 1 (Keap1).
Result
2
Compared with the blank group, plumbagin could inhibit the activity of T24 cells (
P
<
0.05) with IC
50
of 3.52 μmol·L
-1
. At the concentrations of 1.5, 3, 6 μmol·L
-1
, plumbagin significantly promoted the apoptosis of T24 cells (
P
<
0.05) as compared with the blank group. Compared with the plumbagin group at 6 μmol·L
-1
, the ferroptosis inhibitor and apoptosis inhibitor groups could reverse the inhibitory effect of 6 μmol·L
-1
plumbagin on the proliferation of T24 cells (
P
<
0.05). Compared with the blank group, the plumbagin groups at 1.5, 3, 6 μmol·L
-1
showed increased content of ROS, MDA, and lipid peroxides in T24 cells, decreased GSH level, and reduced SLC7A11, GPX4, and Nrf-2/Keap1 (
P
<
0.05).
Conclusion
2
plumbagin can induce ferroptosis, and its mechanism is related to the Nrf-2/Keap1 signaling pathway.
关键词
Keywords
references
BRAY F , FERLAY J , SOERJOMATARAM I , et al . Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin , 2018 , 68 ( 6 ): 394 - 424 .
CUMBERBATCH M , JUBBER I , BLACK P C , et al . Epidemiology of bladder cancer: A systematic review and contemporary update of risk factors in 2018 [J]. Eur Urol , 2018 , 74 ( 6 ): 784 - 795 .
CHANG S S . Re: Prediction model for recurrence probabilities after intravesical chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer, including external validation [J]. J Urol , 2017 , 198 ( 3 ): 482 - 483 .
DIXON S J , LEMBERG K M , LAMPRECHT M R , et al . Ferroptosis: An iron-dependent form of nonapoptotic cell death [J]. Cell , 2012 , 149 ( 5 ): 1060 - 1072 .
ZHAO S , LI P , WU W , et al . Roles of ferroptosis in urologic malignancies [J]. Cancer Cell Int , 2021 , 21 ( 1 ): 676 .
LI Z , WANG C , DAI C , et al . Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy [J]. Biomaterials , 2022 , 287 : 121668 .
HENRIQUES PALMA G B , KAUR M . Cholesterol depletion modulates drug resistance pathways to sensitize resistant breast cancer cells to tamoxifen [J]. Anticancer Res , 2022 , 42 ( 1 ): 565 - 579 .
GHARBARAN R , SHI C , ONWUMERE O , et al . Plumbagin induces cytotoxicity via loss of mitochondrial membrane potential and caspase activation in metastatic retinoblastoma [J]. Anticancer Res , 2021 , 41 ( 10 ): 4725 - 4732 .
JIANG Z B , XU C , WANG W , et al . Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8 + T cells [J]. Pharmacol Res , 2021 , 169 : 105656 .
JAMPASRI S , REABROI S , TUNGMUNNITHUM D , et al . Plumbagin suppresses breast cancer progression by downregulating HIF-1 α expression via a PI3K/Akt/mTOR independent pathway under hypoxic condition [J]. Molecules , 2022 , 27 ( 17 ): 5716 .
ZHAN S , LU L , PAN S S , et al . Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth [J]. Br J Cancer , 2022 , 127 ( 2 ): 364 - 376 .
LEI P , BAI T , SUN Y . Mechanisms of ferroptosis and relations with regulated cell death: A review [J]. Front Physiol , 2019 , 10 : 139 .
YAN B , AI Y , SUN Q , et al . Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1 [J]. Mol Cell , 2021 , 81 ( 2 ): 355 - 369 .
HASSANNIA B , VANDENABEELE P , VANDEN BERGHE T . Targeting ferroptosis to iron out cancer [J]. Cancer Cell , 2019 , 35 ( 6 ): 830 - 849 .
LIU X , WANG T , WANG W , et al . Emerging potential therapeutic targets of ferroptosis in skeletal diseases [J]. Oxid Med Cell Longev , 2022 , 2022 : 3112388 .
LI H , YU Y , LIU Y , et al . Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer [J]. Pharmacol Res , 2022 , 182 : 106306 .
GAO M , FAN K , CHEN Y , et al . Understanding the mechanistic regulation of ferroptosis in cancer: The gene matters [J]. J Genet Genomics , 2022 , 49 ( 10 ): 913 - 926 .
LIU J , ZHANG M , QIN C , et al . Resveratrol attenuate myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction [J]. Front Pharmacol , 2022 , 13 : 906073 .
KOPACZ A , KLOSKA D , FORMAN H J , et al . Beyond repression of Nrf2: An update on Keap1 [J]. Free Radic Biol Med , 2020 , 157 : 63 - 74 .
BAIRD L , YAMAMOTO M . Nrf2-dependent bioactivation of mitomycin C as a novel strategy to target Keap1-Nrf2 pathway activation in human cancer [J]. Mol Cell Biol , 2021 , 41 ( 2 ): e00473-20 .
SUN X , OU Z , CHEN R , et al . Activation of the p62-Keap1-Nrf2 pathway protects against ferroptosis in hepatocellular carcinoma cells [J]. Hepatology , 2016 , 63 ( 1 ): 173 - 184 .