浏览全部资源
扫码关注微信
1.南京中医药大学 附属苏州市中医医院,江苏 苏州 215009
2.河南中医药大学 第三附属医院,郑州 450000
Published:05 July 2023,
Published Online:21 February 2023,
Received:13 December 2022,
扫 描 看 全 文
王晓鹏,杨会举,孙明明等.枳实-白术调节PINK1/Parkin信号通路介导的线粒体自噬改善慢传输型便秘大鼠结肠动力障碍[J].中国实验方剂学杂志,2023,29(13):45-53.
WANG Xiaopeng,YANG Huiju,SUN Mingming,et al.Aurantii Fructus Immaturus, Atractylodis Macrocephalae Rhizoma, and Their Combination Treat Colonic Motility Disorders in Rats with Slow Transit Constipation via PINK1/Parkin Signaling Pathway-mediated Mitophagy[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(13):45-53.
王晓鹏,杨会举,孙明明等.枳实-白术调节PINK1/Parkin信号通路介导的线粒体自噬改善慢传输型便秘大鼠结肠动力障碍[J].中国实验方剂学杂志,2023,29(13):45-53. DOI: 10.13422/j.cnki.syfjx.20230340.
WANG Xiaopeng,YANG Huiju,SUN Mingming,et al.Aurantii Fructus Immaturus, Atractylodis Macrocephalae Rhizoma, and Their Combination Treat Colonic Motility Disorders in Rats with Slow Transit Constipation via PINK1/Parkin Signaling Pathway-mediated Mitophagy[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(13):45-53. DOI: 10.13422/j.cnki.syfjx.20230340.
目的
2
基于线粒体自噬及磷酸酶及张力蛋白同源物诱导的蛋白激酶1(PINK1)/帕金蛋白(Parkin)通路观察枳实、白术及其配伍对慢传输型便秘大鼠结肠动力障碍的改善作用,为临床精准用药提供理论参考。
方法
2
将56只雄性SD大鼠按体质量随机分成正常组、模型组、自然恢复组、枳实组、白术组、枳实-白术组和莫沙必利组,每组各8只。除正常组外,采用洛哌丁胺连续14 d灌胃(3 mg·kg
-1
·d
-1
)构建慢传输型便秘大鼠模型。造模成功后,除模型组继续洛哌丁胺诱导外,正常组和自然恢复组采用0.9%生理盐水灌胃,枳实组(1.35 g·kg
-1
·d
-1
)、白术组(2.7 g·kg
-1
·d
-1
)、枳实-白术组(4.05 g·kg
-1
·d
-1
)和莫沙必利组(1.56 mg·kg
-1
·d
-1
)大鼠分别给予相应的药物灌胃,连续7 d。观察药物对大鼠粪便数量、粪便含水率及小肠推进率的影响;苏木素-伊红(HE)染色法和阿尔新兰-过碘酸雪夫染色(AB-PAS)观察结肠病理变化;紫外分光光度计测定结肠组织呼吸链复合体活性;透射电子显微镜观察结肠组织超微结构;实时荧光定量聚合酶链式反应(Real-time PCR)检测PINK1、Parkin和p62 mRNA表达;蛋白免疫印迹法(Western blot)检测微管相关蛋白1轻链3(LC3)、线粒体自噬相关蛋白PINK1和Parkin的表达水平。
结果
2
与正常组比较,模型组和自然恢复组大鼠粪便数量、含水率及小肠推进率均明显下降(
P
<
0.05,
P
<
0.01),结肠组织线粒体呼吸链复合体Ⅱ、Ⅲ和Ⅳ活性明显降低(
P
<
0.05,
P
<
0.01),PINK1、Parkin mRNA表达,PINK1、Parkin和LC3蛋白表达显著上调(
P
<
0.01),p62 mRNA表达明显下降(
P
<
0.05);与模型组和自然恢复组比较,枳实-白术组大鼠粪便数量、含水率、小肠推进率及线粒体呼吸链复合体Ⅱ、Ⅲ和Ⅳ活性均明显提高(
P
<
0.05,
P
<
0.01);透射电镜结果显示,枳实-白术组可减轻结肠组织线粒体肿胀程度,并能明显降低PINK1、Parkin mRNA表达,降低PINK1、Parkin和LC3蛋白表达(
P
<
0.05,
P
<
0.01),明显升高p62 mRNA表达(
P
<
0.05)。
结论
2
枳实、白术配伍后可显著改善洛哌丁胺诱导的大鼠慢传输型便秘,其机制可能与阻断PINK1/Parkin信号通路抑制结肠组织中Cajal间质细胞线粒体过度自噬有关。
Objective
2
To observe the effects of Aurantii Fructus Immaturus, Atractylodis Macrocephalae Rhizoma, and their combination on slow transit constipation via PTEN-induced putative kinase 1 (PINK1)/Parkin pathway-mediated mitophagy.
Method
2
Fifty-six male SD rats were randomly assigned into normal group, model group, natural recovery group, Aurantii Fructus Immaturus group, Atractylodis Macrocephalae Rhizoma group, Aurantii Fructus Immaturus combined with Atractylodis Macrocephalae Rhizoma group, and mosapride group, with 8 rats in each group. Slow transit constipation model was established by gavage with loperamide (3 mg·kg
-1
·d
-1
) for 14 days in other groups except the normal group. After successful modeling, except that the model group was continuously induced by loperamide, the normal group and the natural recovery group were administrated with 0.9% normal saline by gavage, and the rats in the Aurantii Fructus Immaturus (1.35 g·kg
-1
·d
-1
) group, the Atractylodis Macrocephalae Rhizoma (2.7 g·kg
-1
·d
-1
) group, the Aurantii Fructus Immaturus combined with Atractylodis Macrocephalae Rhizoma (4.05 g·kg
-1
·d
-1
) group, and the mosapride (1.56 mg·kg
-1
·d
-1
) group were administrated with corresponding drugs by gavage for 7 days. The amount of feces, fecal water content, and intestinal propulsion rate of rats were determined. The pathological changes of the colon were evaluated by hematoxylin-eosin (HE) staining and Alcian blue-periodic acid-Schiff (AB-PAS) staining. The activity of respiratory chain complex and the ultrastructure of the colon tissue were determined by ultraviolet spectrophotometry and observed by transmission electron microscopy, respectively. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was employed to determine the mRNA levels of PINK1, Parkin, and p62, and Western blot to determine the protein levels of microtubule-associated protein 1 light chain 3 (LC3), PINK1, and Parkin.
Result
2
Compared with the normal group, the model group and the natural recovery group showed decreases in the amount of feces, fecal water content, intestinal propulsion rate (
P
<
0.05,
P
<
0.01), and activities of mitochondrial respiratory chain complexes Ⅱ, Ⅲ, and Ⅳ in the colon tissue (
P
<
0.05,
P
<
0.01). Further, the mRNA levels of PINK1 and Parkin and the protein levels of PINK1, Parkin, and LC3 were up-regulated (
P
<
0.01) and the mRNA level of p62 was down-regulated in the model group (
P
<
0.05) and the natural recovery group. Compared with the model group and the natural recovery group, the Aurantii Fructus Immaturus combined with Atractylodis Macrocephalae Rhizoma group showed increased amount of feces, fecal water content, intestinal propulsion rate, and activities of mitochondrial respiratory chain complexes Ⅱ, Ⅲ, and Ⅳ (
P
<
0.05,
P
<
0.01). Moreover, the combination meliorated the degree of mitochondrial swelling in the colon tissue, down-regulated the mRNA levels of PINK1 and Parkin and the protein levels of PINK1, Parkin, and LC3 (
P
<
0.05,
P
<
0.01), and up-regulated the mRNA level of p62 (
P
<
0.05).
Conclusion
2
Aurantii Fructus Immaturus and Atractylodis Macrocephalae Rhizoma, and their combination may remedy the colonic motility disorders in rats with slow transit constipation by blocking PINK1/Parkin signaling pathway to inhibit the excessive mitophagy in interstitial cells of Cajal in the colon tissue.
枳实白术慢传输型便秘自噬磷酸酶及张力蛋白同源物诱导的蛋白激酶1/帕金蛋白信号通路
Aurantii Fructus ImmaturusAtractylodis Macrocephalae Rhizomaslow transit constipationautophagyPTEN-induced putative kinase 1/Parkin signaling pathway
SHINE J E,PARK K S,NAM K.Chronic functional constipation[J].Korean J Gastroenterol,2019,73(2):92-98.
SCHILLER L R.Chronic constipation:New insights, better outcomes?[J].Lancet Gastroenterol Hepatol,2019,4(11):873-882.
RUSSO M,STRISCIUGLIO C,SCARPATO E,et al. Functional chronic constipation:Rome Ⅲ criteria versus Rome Ⅳ criteria[J].J Neurogastroenterol Motil,2019,25(1):123-128.
BARBERIO B,JUDGE C,SAVARINO E V,et al.Global prevalence of functional constipation according to the Rome criteria:A systematic review and meta-analysis[J].Lancet Gastroenterol Hepatol,2021,6(8):638-648.
RAJINDRAJITH S,RANATHUNGA N,JAYAWICKRAMA N,et al.Behavioral and emotional problems in adolescents with constipation and their association with quality of life[J].PLoS One,2020,15(10):e0239092.
AZIZ I,WHITEHEAD W E,PALSSON O S,et al.An approach to the diagnosis and management of Rome Ⅳ functional disorders of chronic constipation[J].Expert Rev Gastroenterol Hepatol,2020,14(1):39-46.
刘芳,张智彬,王邦林,等.加味枳实、白术汤治疗气阴两虚型老年原发性便秘的临床疗效[J].中国实验方剂学杂志,2021,27(17):99-105.
侯毅,谷云飞,朱秉宜.枳实、白术组方中药制剂治疗慢性便秘文献分析[J].河南中医,2015,35(4):916-920.
XIAO J. Aging decreases the density of colonic interstitial cells of Cajal associated with constipation in rats[J].J Neurogastroenterol Motil, 2018, 24(2):326-328.
WANG H,REN B,PAN J,et al.Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway[J].Acta Biochim Pol,2022,69(3):579-586.
ZHENG H,LIU Y J,CHEN Z C,et al.miR-222 regulates cell growth, apoptosis, and autophagy of interstitial cells of Cajal isolated from slow transit constipation rats by targeting c-kit[J].Indian J Gastroenterol,2021,40(2):198-208.
颜帅,乐音子,王晓鹏.谷氨酸诱导大鼠结肠Cajal间质细胞构建自噬模型[J].中国老年学杂志,2021,41(3):607-611.
YAN S,YUE Y Z,SUN M M,et al.Suppressive effect of Aurantii Fructus Immaturus and Atractylodis Macrocephalae Rhizoma on glutamic acid-induced autophagy of interstitial cells of Cajal[J].J Integr Med,2020,18(4):334-343.
LI S,LEI Y,CHEN J D.Roles of ATP sensitive potassium channel in modulating gastric tone and accommodation in dogs[J].Scand J Gastroenterol,2017,52(5):515-522.
DEMINE S,RENARD P,ARNOURrnould T. Mitochondrial uncoupling:A key controller of biological processes in physiology and diseases[J]. Cells,2019,8(8):795.
MEDINI H,COHEN T,MISHMAR D.Mitochondria are fundamental for the emergence of metazoans:On metabolism,genomic regulation,and the birth of complex organisms[J].Annu Rev Genet,2020,54:151-166.
TANAKA K. The PINK1-Parkin axis: An overview [J]. Neurosci Res, 2020, 159:9-15.
LIGEON L A,PENA-FRANCESCH M,VANOAICA L D,et al.Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class Ⅱ restricted antigen presentation[J].Nat Commun,2021,12(1):1508.
YAN S,HAO M,YANG H,et al.Metabolomics study on the therapeutic effect of the Chinese herb pair Fructus Aurantii Immaturus and Rhizoma Atractylodis Macrocephalae in constipated rats based on UPLC-Q/TOF-MS analysis[J].Ann Palliat Med,2020,9(5):2837-2852.
ZHAN Y, WEN Y, DU L J, et al. Effects of Maren pills on the intestinal microflora and short-chain fatty acid profile in drug-induced slow transit constipation model rats [J]. Front Pharmacol, 2022, 13:804723.
YAN S,YUE Y Z,WANG X P,et al.Aqueous extracts of Herba Cistanche promoted intestinal motility in loperamide-induced constipation rats by ameliorating the interstitial cells of Cajal[J].Evid Based Complement Alternat Med,2017,2017:6236904.
徐叔云,苄如濂,陈修.药理实验方法学[M].3版.北京:人民卫生出版社,2002:203.
陈四清.国医大师周仲瑛从气滞治疗便秘验案[J].江苏中医药, 2014,46(9):47-48.
顾俊菲,刘培,陶伟伟,等.药对配伍策略及其内在机制研究述评[J].中华中医药杂志,2021,36(1):45-49.
王晓鹏,乐音子,孙明明,等.明清吴门医家医籍便秘处方配伍特色分析研究[J].国际中医中药杂志,2019,41(9):992-997.
甄曙光,王晓鹏,乐音子,等.基于真实世界的当代吴门医派名老中医辨治便秘学术经验研究[J].中国中医基础医学杂志,2018,24(10):1407-1410.
孙明明,颜帅,陈映辉,等.枳实生白术配伍联合生物反馈治疗混合型功能性便秘临床观察[J].广州中医药大学学报, 2019, 36(1):20-26.
ONISHI M,YAMANO K,SATO M,et al.Molecular mechanisms and physiological functions of mitophagy[J].EMBO J,2021,40(3):e104705.
WANG R,WANG G.Autophagy in mitochondrial quality control[J].Adv Exp Med Biol,2019,1206:421-434.
黄亚娟,蒋士生,向燕芳.洛哌丁胺对大鼠慢传输型便秘模型的稳定性研究[J].湖南中医杂志,2020,36(7):153-156.
乐音子,王晓鹏,甄曙光,等.通便汤对慢传输型便秘大鼠结肠c-kit和MLCK表达的影响[J].安徽医科大学学报,2019,54(8):1215-1220.
VERCELLINO I,SAZANOV L A.The assembly, regulation and function of the mitochondrial respiratory chain[J].Nat Rev Mol Cell Biol,2022,23(2):141-161.
NGUYEN T N, PADMAN B S, LAZAROU M. Deciphering the molecular signals of PINK1/Parkin mitophagy[J]. Trends Cell Biol, 2016, 26(10):733-744.
YOBOUE E D,VALENTE E M.PINK1 and Parkin: The odd couple[J].Neurosci Res,2020,159:25-33.
CHU C T.Mechanisms of selective autophagy and mitophagy:Implications for neurodegenerative diseases[J].Neurobiol Dis,2019,122:23-34.
张静,张宇,唐露露,等.基于PINK1/Parkin通路探讨肝豆汤对Wilson病TX模型小鼠的线粒体自噬的影响[J].中国实验方剂学杂志,2022,28(12):111-118.
HECKMANN B L,GREEN D R.LC3-associated phagocytosis at a glance[J].J Cell Sci,2019,132(5):jcs222984.
王香香,王煜姣,李莉,等.基于线粒体自噬及PINK1/Parkin信号通路探讨柴胡疏肝散治疗功能性消化不良大鼠的作用机制[J].中国实验方剂学杂志,2023,29(2):45-51.
0
Views
31
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution