浏览全部资源
扫码关注微信
1.安徽中医药大学 神经病学研究所,合肥 230038
2.安徽三生缘时代生物科技有限公司,合肥 230093
Published:05 June 2023,
Published Online:17 March 2023,
Received:14 December 2022,
扫 描 看 全 文
尚小龙,徐陈陈,董健健等.霍山石斛多糖调控NLRP3炎症小体对帕金森病模型神经炎性损伤的抑制作用[J].中国实验方剂学杂志,2023,29(11):97-105.
SHANG Xiaolong,XU Chenchen,DONG Jianjian,et al.Mechanism of Dendrobium huoshanense Polysaccharide Against Neuroinflammation in Parkinson's Disease Model: Based on NLRP3 Inflammasome[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(11):97-105.
尚小龙,徐陈陈,董健健等.霍山石斛多糖调控NLRP3炎症小体对帕金森病模型神经炎性损伤的抑制作用[J].中国实验方剂学杂志,2023,29(11):97-105. DOI: 10.13422/j.cnki.syfjx.20230437.
SHANG Xiaolong,XU Chenchen,DONG Jianjian,et al.Mechanism of Dendrobium huoshanense Polysaccharide Against Neuroinflammation in Parkinson's Disease Model: Based on NLRP3 Inflammasome[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(11):97-105. DOI: 10.13422/j.cnki.syfjx.20230437.
目的
2
研究霍山石斛多糖(DHP)对帕金森病(PD)模型神经元炎性损伤的抑制机制。
方法
2
将SH-SY5Y细胞分为空白组、模型组和DHP组,噻唑蓝(MTT)比色法检测干预后各组SH-SY5Y细胞存活率,比色分析法检测细胞乳酸脱氢酶(LDH)、活性氧(ROS)、丙二醛(MDA)和超氧化物歧化酶(SOD)的水平;将小胶质细胞(BV-2)分为空白组、模型组、DHP组和MCC950组(对照组),应用酶联免疫吸附测定法(ELISA)检测肿瘤坏死因子-
α
(TNF-
α
)、白细胞介素-1
β
(IL-1
β
)和白细胞介素-18(IL-18)含量;蛋白免疫印迹法(Western blot)检测NOD样受体蛋白3(NLRP3)、接头蛋白凋亡相关的点状蛋白(ASC)、胱天蛋白酶-1(Caspase-1)及IL-1
β
蛋白的表达量。C57BL/6小鼠设置空白组、模型组、DHP低剂量(100 mg·kg
-1
)组、DHP高剂量(350 mg·kg
-1
)组及MCC950组(对照组),每组10只。通过平衡木实验、悬挂实验和转棒实验观察小鼠运动平衡和协调能力;免疫荧光染色法检测小鼠中脑黑质小胶质细胞Iba-1和酪氨酸羟化酶(TH)表达水平;FJB染色检测中脑黑质多巴胺神经元损伤情况;ELISA检测小鼠中脑组织IL-1
β
、IL-18和TNF-
α
等炎症因子表达水平;Western blot检测NLRP3、ASC、Caspase-1和IL-1
β
蛋白表达水平。
结果
2
与空白组比较,模型组细胞存活率降低,LDH、ROS和MDA水平升高(
P
<
0.05),SOD水平降低(
P
<
0.05);与模型组比较,DHP组细胞存活率升高,LDH、ROS和MDA水平降低(
P
<
0.01),SOD水平升高(
P
<
0.01)。与空白组比较,BV-2细胞模型组炎症因子IL-1
β
、IL-18和TNF-
α
水平升高(
P
<
0.05),NLRP3、Caspase-1、IL-1
β
及ASC蛋白表达增多(
P
<
0.05);与模型组比较,DHP组及MCC950组炎症因子IL-1
β
、IL-18和TNF-
α
水平降低(
P
<
0.01),NLRP3、Caspase-1、IL-1
β
及ASC蛋白表达减少(
P
<
0.01)。与空白组比较,模型组小鼠通过平衡木时间增多(
P
<
0.05),转棒实验在棒时间减少(
P
<
0.05),IL-1
β
、IL-18和TNF-
α
水平升高(
P
<
0.05),Iba-1表达增多(
P
<
0.05),TH表达水平降低(
P
<
0.05),中脑黑质神经元阳性细胞数增多(
P
<
0.05),NLRP3、Caspase-1、ASC及IL-1
β
蛋白表达增多(
P
<
0.05);与模型组比较,DHP组及MCC950组小鼠通过平衡木时间减少(
P
<
0.01),转棒实验中在棒时间增多(
P
<
0.01),中脑炎症因子IL-1
β
、IL-18和TNF-
α
水平降低(
P
<
0.01),中脑黑质Iba-1表达减少(
P
<
0.01),TH表达水平升高(
P
<
0.01),FJB染色中脑黑质神经元阳性细胞数减少(
P
<
0.01),MCC950组NLRP3、ASC及IL-1
β
蛋白降低(
P
<
0.01),DHP高剂量组NLRP3、ASC、Caspase-1及IL-1
β
蛋白降低(
P
<
0.01)。
结论
2
DHP具有抗氧化应激作用;DHP可能通过调控NLRP3炎症小体表达,抑制小胶质细胞过度活化,进而降低PD模型神经炎性损伤,发挥神经保护作用。
Objective
2
To explore the mechanism of
Dendrobium huoshanense
polysaccharide (DHP) against inflammatory damage of neurons in Parkinson's disease (PD) model.
Method
2
SH-SY5Y cells were randomized into blank group, model group, and DHP group. The survival rate of cells was measured by thiazole blue(MTT) assay, and the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured by colorimetric analysis. BV-2 microglia were classified into blank group, model group, DHP group, and MCC950 group (positive control group), and enzyme-linked immunosorbent assay (ELISA) was applied to detect the levels of tumor necrosis factor-
α
(TNF-
α
), interleukin-1
β
(IL-1
β
), and interleukin-18 (IL-18). The expression of NOD-like receptor protein 3 (NLRP3), adaptor protein apoptosis-associated dot protein (ASC), cysteine aspartic protease-1 (Caspase-1), and IL-1
β
was measured by Western blot. A total of 50 C57BL/6 mice were randomized into blank group, model group, DHP low-dose (100 mg·kg
-1
) group, DHP equivalent-dose (350 mg·kg
-1
) group, and MCC950 group (positive control group), 10 mice in each group. The motor balance and coordination of C57BL/6 mice were observed by beam walking test, tail suspension test and rotarod test. The levels of Iba-1 and tyrosine hydroxylase (TH) were detected by immunofluorescence staining. The damage of dopaminergic neurons in the substantia nigra was detected by FJB staining. The levels of inflammatory factors such as IL-1
β
, IL-18, and TNF-
α
in mouse midbrain tissues were detected by ELISA and the protein levels of NLRP3, ASC, Caspase-1, and IL-1
β
protein were measured by Western blot.
Result
2
Compared with the blank group, the SH-SY5Y model group showed decreased cell survival, increased levels of LDH, ROS, and MDA (
P
<
0.05), and decreased levels of SOD (
P
<
0.05). Compared with the model group, the DHP group demonstrated increased cell survival, decreased levels of LDH, ROS, and MDA (
P
<
0.01), and increased level of SOD (
P
<
0.01). Compared with the blank group, BV-2 model group had high levels of IL-1
β
, IL-18, and TNF-
α
(
P
<
0.05) and high protein expression of NLRP3, Caspase-1, IL-1
β
, and ASC (
P
<
0.05). Compared with the model group, DHP and MCC950 groups demonstrated low levels of IL-1
β
, IL-18, and TNF-
α
(
P
<
0.01) and low protein expression of NLRP3, Caspase-1, IL-1
β
, and ASC (
P
<
0.01). Compared with the blank group, the C57BL/6 model group displayed long time to pass the balance wood (
P
<
0.05), short time spent on the rod in the rotarod test (
P
<
0.05), high levels of IL-1
β
, IL-18, and TNF-
α
(
P
<
0.05) and expression of Iba-1 in the midbrain substantia nigra (
P
<
0.05), low TH expression (
P
<
0.05), more positive neurons in the FJB staining (
P
<
0.05), and high expression of NLRP3, Caspase-1, ASC, and IL-1
β
proteins (
P
<
0.05). Compared with the model group, the mice in the DHP and MCC950 groups had short time to pass the balance beam (
P
<
0.01), long time spent on the rod (
P
<
0.01), low levels of IL-1
β
, IL-18, and TNF-
α
(
P
<
0.01), low Iba-1 expression in midbrain substantia nigra (
P
<
0.01), high TH expression (
P
<
0.01), and small number of positive neurons in the midbrain substantia nigra (
P
<
0.01). The expression of NLRP3, ASC, and IL-1
β
proteins was lower in the MCC950 group (
P
<
0.01), and the expression of NLRP3, ASC, Caspase-1 and IL-1
β
proteins was lower in the DHP equivalent-dose group (
P
<
0.01) than in the model group.
Conclusion
2
DHP has anti-oxidative stress effect. It regulates the expression of NLRP3 inflammasome and inhibits the overactivation of microglia, thereby alleviating the neuroinflammatory injury in PD and exerting the neuroprotective effect.
帕金森病霍山石斛多糖氧化应激神经炎症NOD样受体蛋白3(NLRP3)炎症小体
Parkinson's diseaseDendrobium huoshanense polysaccharideoxidative stressneuroinflammationNOD-like receptor protein 3 (NLRP3) inflammasome
中华医学会神经病学分会帕金森病及运动障碍学组,中国医师协会神经内科医师分会帕金森病及运动障碍学组.中国帕金森病治疗指南(第四版)[J].中华神经科杂志,2020,53(12):973-986.
RAZA C,ANJUM R,SHAKEEL N.Parkinson's disease:Mechanisms,translational models and management strategies[J].Life Sci,2019,226:77-90.
NAOI M,MARUYAMA W,SHAMOTO-NAGAI M.Disease-modifying treatment of Parkinson's disease by phytochemicals:Targeting multiple pathogenic factors[J].J Neural Transm (Vienna),2022,129(5/6):737-753.
TOLOSA E,VILA M,KLEIN C,et al.LRRK2 in Parkinson disease:Challenges of clinical trials[J].Nat Rev Neurol,2020,16(2):97-107.
HAQUE M E,AKTHER M,AZAM S,et al.Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease[J].Br J Pharmacol,2022,179(1):23-45.
ALBANESE A,DI GIOVANNI M,LALLI S.Dystonia:Diagnosis and management[J].Eur J Neurol,2019,26(1):5-17.
谷仿丽,黄仁术,何晓梅,等.霍山石斛抗急性炎症有效部位筛选研究[J].宜春学院学报,2022,44(3):1-5.
徐海军,方予,汪俊涛,等.霍山石斛多糖对小鼠的双向免疫调节作用[J].免疫学杂志,2018,34(8):731-736.
聂春艳,汪鹤,潘利华,等.霍山石斛水溶性多糖抗亚急性酒精性肝损伤研究[J].安徽农业科学,2017,45(17):100-105.
徐海军,高温婷,杨健,等.霍山石斛多糖对衰老模型大鼠肠道消化吸收功能和形态结构的影响[J].皖西学院学报,2018,34(2):1-4.
刘川,李环,王大伟.霍山石斛多糖对帕金森病模型小鼠脑组织氧化应激和炎症反应的影响[J].吉林大学学报:医学版,2023,49(1):110-115.
DONG J,ZHANG X,WANG S,et al.Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway[J].Front Pharmacol,2020,11:615598.
国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科技出版社,2020.
GAO M R,WANG M,JIA Y Y,et al.Echinacoside protects dopaminergic neurons by inhibiting NLRP3/Caspase-1/IL-1β signaling pathway in MPTP-induced Parkinson's disease model[J].Brain Res Bull,2020,164:55-64.
雒晓东,李哲,朱美玲,等.帕金森病(颤拘病)中医临床诊疗专家共识[J].中医杂志,2021,62(23):2109-2116.
GUO J D,ZHAO X,LI Y,et al.Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review)[J].Int J Mol Med,2018,41(4):1817-1825.
ARENA G,SHARMA K,AGYEAH G,et al.Neurodegeneration and neuroinflammation in Parkinson's disease:A self-sustained loop[J].Curr Neurol Neurosci Rep,2022,22(8):427-440.
FORLONI G,LA VITOLA P,CEROVIC M,et al.Inflammation and Parkinson's disease pathogenesis:Mechanisms and therapeutic insight[J].Prog Mol Biol Transl Sci,2021,177:175-202.
HIRSCH E C,BREIDERT T,ROUSSELET E,et al.The role of glial reaction and inflammation in Parkinson's disease[J].Ann N Y Acad Sci,2003,991:214-228.
刘川,高妍,张赫.霍山石斛多糖对MPTP诱导的帕金森病小鼠模型的神经保护作用[J].吉林医药学院学报,2022,43(3):164-167.
KAM T I,HINKLE J T,DAWSON T M,et al.Microglia and astrocyte dysfunction in parkinson's disease[J].Neurobiol Dis,2020,144:105028.
SARKAR S,MALOVIC E,HARISHCHANDRA D S,et al.Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease[J].NPJ Parkinsons Dis,2017,3:30.
WANG S,YUAN Y H,CHEN N H,et al.The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease[J].Int Immunopharmacol,2019,67:458-464.
BAKHSHI S,SHAMSI S.MCC950 in the treatment of NLRP3-mediated inflammatory diseases:Latest evidence and therapeutic outcomes[J].Int Immunopharmacol,2022,3:106.
0
Views
25
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution