浏览全部资源
扫码关注微信
1.成都中医药大学 药学院/西南特色中药资源国家重点实验室,中药材标准化重点实验室,成都 611137
2.四川省中医药科学院,成都 610041
Published:20 July 2023,
Published Online:06 May 2023,
Received:06 February 2023,
扫 描 看 全 文
连艳,黄凤,朱文涛等.基于PacBio测序的对叶百部叶绿体基因组结构及系统发育分析[J].中国实验方剂学杂志,2023,29(14):123-132.
LIAN Yan,HUANG Feng,ZHU Wentao,et al.Chloroplast Genome Structure of Stemona tuberosa and Phylogenetic Analysis Based on PacBio Sequencing[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):123-132.
连艳,黄凤,朱文涛等.基于PacBio测序的对叶百部叶绿体基因组结构及系统发育分析[J].中国实验方剂学杂志,2023,29(14):123-132. DOI: 10.13422/j.cnki.syfjx.20230616.
LIAN Yan,HUANG Feng,ZHU Wentao,et al.Chloroplast Genome Structure of Stemona tuberosa and Phylogenetic Analysis Based on PacBio Sequencing[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):123-132. DOI: 10.13422/j.cnki.syfjx.20230616.
目的
2
获得对叶百部
Stemona tuberosa
高质量叶绿体基因组信息,明确其结构、序列特征,同时确定对叶百部的系统发育地位。
方法
2
采用Illumina NovaSeq 6000和PacBio RS Ⅱ平台对对叶百部分别进行建库测序,利用生物信息软件将2个测序平台的数据进行混合组装和碱基校正,最终获得高质量叶绿体基因组,随后对其序列特征、重复序列、基因多样性和系统发育进行分析。
结果
2
对叶百部叶绿体基因组大小为154 379 bp,叶绿体基因组结构为典型环状四段式,1对27 074 bp的反向重复区(IR),1个大小为17 924 bp的小单拷贝区(SSC)和1个82 307 bp的大单拷贝区(LSC),平均鸟嘌呤和肥嘧啶所占的比率(GC)含量为37.86%;共注释得到121个基因,包括30个tRNA基因,4个rRNA基因和87蛋白编码基因,其中6个tRNA基因和12个蛋白质编码基因中存在内含子;对叶百部叶绿体基因组中共发现49个长重复序列和59个单核苷酸简单重复序列(SSR);4个百部属的叶绿体基因组比较分析表明
ycf1
和
ndhF
基因具有高度多样性;基于叶绿体基因组构建的系统发育树与对叶百部目前的分类地位一致。
结论
2
成功组装了对叶百部叶绿体高质量基因组,获得了包括对叶百部在内的4种百部属植物叶绿体基因组的结构及序列特征信息,为百部属药用植物的鉴定、进化和系统发育研究奠定基础。
Objective
2
To obtain high-quality chloroplast genome information on
Stemona tuberosa
and clarify its structure, sequence features, and phylogenetic status.
Method
2
The Illumina NovaSeq 6000 and PacBio RS Ⅱ platforms were used for library construction and sequencing of
S. tuberosa,
respectively. The data from both sequencing platforms were combined and subjected to bioinformatics analysis for genome assembly and base correction, resulting in a high-quality chloroplast genome. Subsequently, sequence features, repetitive sequences, gene diversity, and phylogeny were analyzed.
Result
2
The chloroplast genome size of
S. tuberosa
was determined to be 154 379 bp. The structure of the chloroplast genome followed the typical quadripartite circular form, consisting of a pair of inverted repeat regions (IRs) with a length of 27 074 bp, a small single-copy region (SSC) of 17 924 bp, and a large single-copy region (LSC) of 82 307 bp. The average GC content was 37.86%. A total of 121 genes were annotated, including 30 tRNA genes, four rRNA genes, and 87 protein-coding genes. Among them, six tRNA genes and 12 protein-coding genes contained introns. In the chloroplast genome of
S. tuberosa
, 49 long repetitive sequences and 59 single-nucleotide simple sequence repeats (SSRs) were identified. Comparative analysis of chloroplast genomes among four
Stemona
species revealed high diversity in the
ycf1
and
ndhF
genes. The phylogenetic tree constructed based on the chloroplast genome showed consistent classification with the current taxonomic status of
S. tuberosa
.
Conclusion
2
The high-quality chloroplast genome of
S. tuberosa
was successfully assembled, providing valuable information on the structure and sequence features of chloroplast genomes in four
Stemona
species, including
S. tuberosa
. These findings lay a foundation for the identification, evolution, and phylogenetic studies of medicinal plants in the genus
Stemona
.
对叶百部叶绿体基因组PacBio测序系统发育
Stemona tuberosachloroplast genomePacBio sequencingphylogeny
LIU Y,SHEN Y,TENG L,et al.The traditional uses, phytochemistry, and pharmacology of Stemona species: A review[J].J Ethnopharmacol,2021,265:113112.
国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科技出版社,2020:138.
LI H M,HE T T,ZHANG M,et al.Stilbenoids from the roots of Stemona tuberosa[J].Nat Prod Res,2022,36(3):695-700.
王昶,陈丽艳,张树明,等.对叶百部化学成分液相行为研究[J].天然产物研究与开发,2014,26(8):1240-1243,1256.
胡君萍,张囡,毛一卿,等.《中国药典》3种百部的止咳作用比较[J].中国中药杂志,2009,34(23):3096-3104.
ZHANG R R,TIAN H,WU Y,et al.Isolation and chemotaxonomic significance of stenine and stemoninine-type alkaloids from the roots of Stemona tuberosa[J].Chin Chemi Lett,2014,25(9):1252-1255.
安巧,邹吉斌,姜阳明,等.对叶百部化学成分研究[J].中草药,2020,51(13):3378-3382.
CHUNG H S,HON P M,LIN G,et al.Antitussive activity of Stemona alkaloids from Stemona tuberosa[J].Planta Med,2003,69(10):914-920.
XU Y T,HON P M,JIANG R W,et al.Antitussive effects of Stemona tuberosa with different chemical profiles[J].J Ethnopharmacol,2006,108(1):46-53.
XU Y T,SHAW P C,JIANG R W,et al.Antitussive and central respiratory depressant effects of Stemona tuberosa[J].J Ethnopharmacol,2010,128(3):679-684.
林思,朱华,秦慧真,等.对叶百部总生物碱对人肝癌SMMC-7721细胞凋亡及Bcl-2,Bax和cleaved Caspase-3蛋白表达的影响[J].中国实验方剂学杂志,2021,27(19):73-79.
王昶,陈丽艳,张树明,等.不同产地对叶百部中新对叶百部碱含量比较研究[J].中华中医药学刊,2012,30(10):2295-2296.
ZHAO H,YANG A,ZHANG N,et al.Insecticidal endostemonines A-J produced by endophytic streptomyces from Stemona sessilifolia[J].J Agric Food Chem,2020,68(6):1588-1595.
HU Z X,AN Q,TANG H Y,et al.Stemtuberolines A-G, new alkaloids from Stemona tuberosa and their anti-TMV activity[J].Fitoterapia,2020,143:104572.
CHALOM S, PANYAKAEW J, PHAYA M, et al. Cytotoxic and larvicidal activities of Stemona alkaloids from the aerial parts and roots of Stemona curtisii Hook.f[J].Nat Prod Res,2021,35(22):1-6.
YIN X,LIAO B,GUO S,et al.The chloroplasts genomic analyses of Rosa laevigata, R. rugosa and R. canina[J].Chin Med,2020,15:18.
YUAN C,SHA X,XIONG M,et al.Uncovering dynamic evolution in the plastid genome of seven Ligusticum species provides insights into species discrimination and phylogenetic implications[J].Sci Rep,2021,11(1):988.
LIAO P H,LI D L,TONG H Y.The complete chloroplast genome of Stemona tuberosa Lour (Stemonaceae)[J].Mitochondrial DNA B Resour,2021,6(4):1317-1318.
LIU J T,JIANG M I,CHEN H M, et al.Comparative genome analysis revealed gene inversions, boundary expansions and contractions, and gene loss in the Stemona sessilifolia (Miq.) chloroplast genome[J].PLoS One,2021,16(6):e0247736.
于涛,张宇阳,高健,等.极小种群濒危植物盐桦叶绿体基因组特征分析[J].林业科学,2019,55(2):41-49.
XU X,WANG D.Comparative chloroplast genomics of Corydalis species (Papaveraceae): Evolutionary perspectives on their unusual large scale rearrangements[J].Front Plant Sci,2020,11:600354.
CUI N,LIAO B S,LIANG C L,et al.Complete chloroplast genome of Salvia plebeia: Organization, specific barcode and phylogenetic analysis[J].Chin J Nat Med,2020,18(8):563-572.
EID J,FEHR A,GRAY J,et al.Real-time DNA sequencing from single polymerase molecules[J].Science,2009,323(5910):133-138.
FERRARINI M,MORETTO M,WARD J A,et al.An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome[J].BMC Genomics,2013,14:670.
LI Y,ZHOU J G,CHEN X L,et al.Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species[J].Sci Rep,2017,7(1):12834.
LIN M,QI X,CHEN J,et al.The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS Ⅱ platform[J].PLoS One,2018,13(5):e0197393.
WU Z H,LIAO R,DONG X,et al.Complete chloroplast genome sequence of Carthamus tinctorius L. from PacBio Sequel Platform[J].Mitochondrial DNA B Resour,2019,4(2):2635-2636.
JIN J J,YU W B,YANG J B,et al.GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes[J].Genome Biol,2020,21(1):241.
LI H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[J].arXiv Preprint,2013,1303:3997.
BANKEVICH A,NURK S,ANTIPOV D,et al.SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[J].J Comput Biol,2012,19(5):455-477.
TILLICH M,LEHWARK P,PELLIZZER T,et al.GeSeq-versatile and accurate annotation of organelle genomes[J].Nucleic Acids Res,2017,45(W1):W6-W11.
LOHSE M,DRECHSEL O,BOCK R.OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J].Curr Genet,2007,52(5/6):267-274.
EMMS D M,KELLY S.OrthoFinder: Phylogenetic orthology inference for comparative genomics[J].Genome Biol,2019,20(1):238.
ABASCAL F, ZARDOYA R, POSADA D. ProtTest:Selection of best-fit models of protein evolution[J].Bioinformatics (Oxford, England),2005,21(9):2104-2105.
STAMATAKIS A.RAxML version 8:A tool for phylogenetic analysis and post-analysis of large phylogenies[J].Bioinformatics,2014,30(9):1312-1313.
ASAF S,KHAN A L,KHAN M A,et al.Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis[J].Sci Rep,2017,7(1):7556.
DONG W,XU C,CHENG T,et al.Sequencing angiosperm plastid genomes made easy: A complete set of universal primers and a case study on the phylogeny of saxifragales[J].Genome Biol Evol,2013,5(5):989-997.
YANG Y,ZHOU T,DUAN D,et al.Comparative analysis of the complete chloroplast genomes of five quercus species[J].Front Plant Sci,2016,7:959.
SUO Z L, LI W Y, JIN X B, et al. A new nuclear dna marker revealing both microsatellite variations and single nucleotide polymorphic loci: A case study on classification of cultivars in Lagerstroemia indica L[J].J Microbial Biochem Technol,2016,8(4):266-271.
YIN X,HUANG F,LIU X,et al.Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis[J].Sci Rep,2022,12(1):14241.
CHEN S L, YIN X M, HAN J P, et al.DNA barcoding in herbal medicine: Retrospective and prospective[J].J Pharmaceut Analysis, https:// doi.org/10.1016/j.jpha.2023.03.008https://doi.org/10.1016/j.jpha.2023.03.008.
XU X,WANG D.Comparative chloroplast genomics of Corydalis species (Papaveraceae): Evolutionary perspectives on their unusual large scale rearrangements[J].Front Plant Sci,2020,11:600354.
LE HIR H,NOTT A,MOORE M J.How introns influence and enhance eukaryotic gene expression[J].Trends Biochem Sci,2003,28(4):215-220.
NIU D K,YANG Y F.Why eukaryotic cells use introns to enhance gene expression: Splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase Ⅰ cutting activity[J].Biol Direct,2011,6:24.
CALLIS J,FROMM M,WALBOT V.Introns increase gene expression in cultured maize cells[J].Genes Dev,1987,1(10):1183-1200.
EMAMI S,ARUMAINAYAGAM D,KORF I,et al.The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana[J].Plant Biotechnol J,2013,11(5):555-563.
CHOI T,HUANG M,GORMAN C,et al.A generic intron increases gene expression in transgenic mice[J].Mol Cell Biol,1991,11(6):3070-3074.
STEPHEN R D, ESMERALDA L, DEBORAH S K.Multiple independent losses of the rpoC1 Intron in angiosperm chloroplast DNA's[J].Systematic Botany,1996,21(2):135-151.
GRAVELEY B R.Alternative splicing: Increasing diversity in the proteomic world[J].Trends Genet,2001,17(2):100-107.
UEDA M,FUJIMOTO M,ARIMURA S,et al.Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus[J].Gene,2007,402(1/2):51-56.
0
Views
18
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution