浏览全部资源
扫码关注微信
1.山西大学 中医药现代研究中心,化学生物学与分子工程教育部重点实验室, 地产中药功效物质研究与利用山西省重点实验室,太原 030006
2.中国科学院 过程工程研究所,北京 100190
Published:20 October 2023,
Published Online:17 February 2023,
Received:06 December 2022,
扫 描 看 全 文
李虎峰,李科,吕弯弯等.仿野生黄芪与移栽黄芪的糖谱差异分析[J].中国实验方剂学杂志,2023,29(20):141-148.
LI Hufeng,LI Ke,LYU Wanwan,et al.Analysis on Sugar Spectrum Difference Between Wild-simulated and Transplanted Astragali Radix[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):141-148.
李虎峰,李科,吕弯弯等.仿野生黄芪与移栽黄芪的糖谱差异分析[J].中国实验方剂学杂志,2023,29(20):141-148. DOI: 10.13422/j.cnki.syfjx.20230663.
LI Hufeng,LI Ke,LYU Wanwan,et al.Analysis on Sugar Spectrum Difference Between Wild-simulated and Transplanted Astragali Radix[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):141-148. DOI: 10.13422/j.cnki.syfjx.20230663.
目的
2
建立仿野生黄芪和移栽黄芪多糖、寡糖、单糖特征糖谱,分析二者的糖谱差异,为黄芪品质评价提供依据。
方法
2
通过高效液相色谱-蒸发光散射检测法(HPLC-ELSD)对18批仿野生黄芪和12批移栽黄芪的多糖进行相对分子质量分布表征,建立2种黄芪多糖的特征图谱,对相对分子质量为10 kDa的多糖组分APS-Ⅱ的峰面积占比进行差异分析,并通过受试者工作特征(ROC)曲线确定APS-Ⅱ峰面积占比临界值。采用三氟乙酸(TFA)将APS-Ⅱ进行部分酸水解,基于HPLC-ELSD建立2种黄芪寡糖特征图谱,并通过主成分分析(PCA)及正交偏最小二乘法-判别分析(OPLS-DA)寻找差异寡糖特征。采用TFA将2种黄芪的APS-Ⅱ完全酸水解并衍生化处理,基于HPLC建立2种黄芪单糖特征图谱,对2种黄芪单糖峰面积占比进行PCA及OPLS-DA处理,分析二者APS-Ⅱ单糖组成的差异。
结果
2
黄芪多糖特征糖谱表明,APS-Ⅱ的峰面积占比为主要差异,仿野生黄芪和移栽黄芪APS-Ⅱ峰面积占比分别为89.17%~97.17%和80.14%~91.96%。ROC曲线确定2种黄芪APS-Ⅱ峰面积占比差异的临界值为92.28%;对APS-Ⅱ寡糖组分进行多元统计分析发现,聚合度≥10的寡糖峰面积占比为主要差异,仿野生黄芪为11.835%~19.092%,移栽黄芪为2.778%~7.017%;单糖特征糖谱分析结果表明,2种黄芪均由6种单糖组成,葡萄糖和阿拉伯糖为差异单糖组分,仿野生黄芪中葡萄糖和阿拉伯糖峰面积占比分别为85%~93.9%、2.7%~5.8%,移栽黄芪为74.3%~87.3%、5.3%~10.7%,提示2种黄芪多糖组分APS-Ⅱ的结构可能有所不同。
结论
2
仿野生黄芪和移栽黄芪间的糖谱差异可能与APS-Ⅱ的含量及结构相关,本研究可为黄芪糖类物质研究及药材品质评价提供参考依据。
Objective
2
To establish the characteristic sugar spectrum of polysaccharides, oligosaccharides and monosaccharides of wild-simulated and transplanted Astragali Radix, and find out the difference of the sugar spectrum between the two, so as to provide a basis for quality evaluation of Astragali Radix.
Method
2
The relative molecular weight distribution of polysaccharides from 18 batches of wild-simulated Astragali Radix and 12 batches of transplanted Astragali Radix were characterized by high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD) to establish the characteristic chromatograms of two kinds of polysaccharides. The difference in the peak area ratio of APS-Ⅱ, a polysaccharide component with a relative molecular weight of 10 kDa, in two kinds of Astragali Radix was analyzed, and the critical value of peak area ratio of APS-Ⅱ was determined by receiver operating characteristic(ROC) curve. At the same time, APS-Ⅱ was partially acid-hydrolyzed by trifluoroacetic acid(TFA) to establish characteristic spectra of two kinds of oligosaccharides from Astragali Radix based on HPLC-ELSD, and the characteristics of differential oligosaccharides were found by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Two kinds of APS-Ⅱ were completely acid-hydrolyzed by TFA and derivatized to establish characteristic spectra of two kinds of monosaccharides from Astragali Radix based on HPLC, PCA and OPLS-DA were performed on the peak area ratio of two kinds of monosaccharides to explore the differences in the composition of two kinds of APS-Ⅱ monosaccharides.
Result
2
The characteristic sugar spectrum of polysaccharides from Astragali Radix showed that the peak area ratio of APS-Ⅱ was the main difference, and the peak area of APS-Ⅱ of wild-simulated and transplanted Astragali Radix were 89.17%-97.17% and 80.14%-91.96%, respectively. The ROC curve determined the critical value of 92.28% for the difference of APS-Ⅱ peak area ratio of the two kinds of Astragali Radix. The multivariate analysis of APS-Ⅱ oligosaccharides revealed that the peak area ratio of oligosaccharides with polymerization degree≥10 was the main difference, which ranged from 11.835%-19.092% for wild-simulated products and 2.778%-7.017% for transplanted products. The results of monosaccharide characteristic sugar spectrum analysis showed that both Astragali Radix species consisted of six monosaccharides, and glucose and arabinose were the differential monosaccharide fractions. The peak area ratios of glucose and arabinose in wild-simulated products were 85%-93.9% and 2.7%-5.8%, respectively, while those of transplanted products were 74.3%-87.3% and 5.3%-10.7%, suggesting that the structures of the two polysaccharide fractions APS-Ⅱ of Astragali Radix may be different.
Conclusion
2
The difference of sugar spectrum between two kinds of Astragali Radix may be related to the content and structure of APS-Ⅱ, and this study may provide a reference for the study of carbohydrates in Astragali Radix and the quality evaluation of medicinal materials.
黄芪多糖糖谱寡糖单糖品质评价高效液相色谱法(HPLC)
Astragali Radixpolysaccharidessugar spectrumoligosaccharidesmonosaccharidesquality evaluationhigh performance liquid chromatography(HPLC)
LI X,QU L,DONG Y,et al.A review of recent research progress on the astragalus genus[J].Molecules,2014,19(11):18850-18880.
高四云,李科,秦雪梅,等.基于绝对生长年限野生与移栽黄芪质量比较研究[J].中草药,2018,49(10):2248-2257.
杜国军,秦雪梅,李震宇,等.蒙古黄芪主产区2种不同种植模式黄芪药材的质量比较[J].中草药,2013,44(23):3386-3393.
李永杰,刘容秀,田文仓,等.不同种源黄芩(子代)药用成分含量的地理变异研究[J].中国中药杂志,2018,43(13):2664-2669.
谢道生.黄芪药材豆腥味与品质关联性研究[D].太原:山西大学,2010.
高凡茸.黄芪药材甜味与品质关联性研究及黄芪糖谱分析方法的建立[D].太原:山西大学,2015.
张瑞,李科,李爱平,等.基于1H NMR技术黄芪抗疲劳作用的肌肉代谢组学研究[J].药学学报,2018,53(5):782-790.
李鑫琦.仿野生与平栽黄芪配伍的当归补血汤药效与配伍的机制比较研究[D].太原:山西大学,2020.
靳志东.仿野生和平栽黄芪配伍的黄芪建中汤治疗慢性萎缩性胃炎的“代谢-肠道菌群”研究[D].太原:山西大学,2021.
靳志东,李科,李爱平,等.黄芪建中汤及其组方单味药化学成分与体内代谢研究进展[J].中草药,2019,50(18):4495-4501.
石子仪,鲍忠,姜勇,等.不同来源黄芪药材中毛蕊异黄酮葡萄糖苷和芒柄花素的定量分析[J].中国中药杂志,2007,32(9):779-783.
姜勇,金芳,鲍忠,等.不同来源黄芪药材中黄芪甲苷的定量分析[J].中国中药杂志,2006,31(11):930-933.
LI K,CAO Y X,JIAO S M,et al.Structural characterization and immune activity screening of polysaccharides with different molecular weights from Astragali Radix[J].Front Pharmacol,2020,11:582091.
佘一鸣,胡永慧,韩立云,等.中药质量控制的研究进展[J].中草药,2017,48(12):2557-2563.
LI K,CUI L J,CAO Y X,et al.UHPLC Q-Exactive MS-based serum metabolomics to explore the effect mechanisms of immunological activity of Astragalus polysaccharides with different molecular weights[J].Front Pharmacol,2020,11:595692.
李科,崔连杰,李晓霞,等.黄芪活性多糖APS-Ⅱ酶解方法的建立及其降解寡糖的免疫活性研究[J].药学学报,2021,56(7):1936-1944.
ZHU N,LV X,WANG Y,et al.Comparison of immunoregulatory effects of polysaccharides from three natural herbs and cellular uptake in dendritic cells[J].Int J Biol Macromol,2016,93(Pt A):940-951.
李钦,胡继宏,高博,等.黄芪多糖在免疫调节方面的最新研究进展[J].中国实验方剂学杂志,2017,23(2):199-206.
吴家玮,刘嘉浩,陈琪,等.校正协变量的ROC曲线在评价标志物预测分类准确性中的应用[J].中国循证医学杂志,2022,22(9):1085-1089.
LIANG T,FU Q,XIN H,et al.Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry[J].Se Pu,2014,32(12):1306-1312.
兰艺鸣,李佳思,韩梅,等.不同林型对林下参产量质量及土壤微生态的影响[J].中国实验方剂学杂志,2022,28(13):181-188.
银玲,彭月,刘荣,等.产地生态环境要素与中药品质相关性研究[J].中药与临床,2012,3(6):9-14.
周环娟,安兰兰,付艳,等.黑骨藤化学成分与生态因子和土壤因子的相关性[J].中国实验方剂学杂志,2021,27(16):141-149.
刘颖,张金莲,邓亚羚,等.黄芪多糖提取、分离纯化及其药理作用研究进展[J].中华中医药杂志,2021,36(10):6035-6038.
芮雯,李婵艺,陈宏远.黄芪多糖的结构表征与生物活性研究进展[J].中药新药与临床药理,2019,30(2):264-270.
LYU G P,HU D J,CHEONG K L,et al.Decoding glycome of Astragalus membranaceus based on pressurized liquid extraction, microwave-assisted hydrolysis and chromatographic analysis[J].J Chromatogr A,2015,1409:19-29.
谢明勇,聂少平.天然产物活性多糖结构与功能研究进展[J].中国食品学报,2010,10(2):1-11.
范信晖,李科,杨一丹,等.基于分子量分布的黄芪多糖抗炎活性组分筛选及代谢组学调控机制研究[J].药学学报,2022,57(3):783-792.
LI K,LI X Q,LI G X,et al.Relationship between the structure and immune activity of components from the active polysaccharides APS-Ⅱ of Astragali Radix by enzymolysis of endo α-1,4-glucanase[J].Front Pharmacol,2022,13:839635.
谭西,周欣,陈华国.植物多糖构效关系研究进展[J].中国中药杂志,2017,42(21):4104-4109.
0
Views
14
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution