浏览全部资源
扫码关注微信
1.成都中医药大学 附属医院,成都 610075
2.代谢性疾病中医药调控四川省重点实验室,成都 610075
Published:20 August 2023,
Published Online:09 June 2023,
Received:13 February 2023,
扫 描 看 全 文
张赛,陈正涛,唐诗韵等.NLRP3炎症小体与糖尿病心肌病的关系及中医药调控研究进展[J].中国实验方剂学杂志,2023,29(16):250-263.
ZHANG Sai,CHEN Zhengtao,TANG Shiyun,et al.Relationship Between NLRP3 Inflammasome and Diabetic Cardiomyopathy and Intervention Effect of Traditional Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(16):250-263.
张赛,陈正涛,唐诗韵等.NLRP3炎症小体与糖尿病心肌病的关系及中医药调控研究进展[J].中国实验方剂学杂志,2023,29(16):250-263. DOI: 10.13422/j.cnki.syfjx.20230715.
ZHANG Sai,CHEN Zhengtao,TANG Shiyun,et al.Relationship Between NLRP3 Inflammasome and Diabetic Cardiomyopathy and Intervention Effect of Traditional Chinese Medicine: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(16):250-263. DOI: 10.13422/j.cnki.syfjx.20230715.
糖尿病心肌病(DCM)是糖尿病的并发症之一,是指发生在糖尿病中,其发病机制区别于其他心血管疾病如冠心病、心脏瓣膜病、亦或先天性心脏病的一种特发类心肌病,亦是多年以来糖尿病患者的主要致死病因之一。研究表明,DCM的发病机制与胰岛素抵抗、多种炎症反应激活、氧化应激增加、冠状动脉微循环受阻、晚期糖基化终产物(AGEs)积累等过程有密切联系。而在多种炎症反应中,NOD样受体蛋白3(NLRP3)炎症小体激活可通过炎症的级联反应诱导分泌出大量促炎细胞因子,继而介导细胞焦亡过程,促进心肌损伤。目前基于NLRP3炎症小体在DCM损伤防治重要作用功能,国内外开展了大量中医药实验研究,证明了黄芪多糖、人参皂苷Rb
1
等中药提取物或单味中药如云芝、冬虫夏草亦或抵挡汤、加味桃核承气汤等组方制剂及针刺、中医运动疗法等可通过调控NLRP3炎症小体的相关通路从而抑制其组装或激活,降低炎症反应,进而抑制DCM中心肌的重构,改善DCM的心脏功能。该文就NLRP3炎症小体与DCM的关系及中医药在此领域中发挥抗炎效应的研究进展进行综述,旨在为DCM开发治疗手段提供新的思路。
Diabetic cardiomyopathy (DCM) is one of the complications of diabetes. It refers to a specific type of idiopathic cardiomyopathy that occurs in individuals with diabetes, distinct from other cardiovascular diseases such as coronary heart disease, valvular heart disease, or congenital heart disease. It has also been identified as one of the leading causes of death in diabetic patients for many years. Research has shown that the pathogenesis of DCM is closely associated with insulin resistance, activation of various inflammatory responses, increased oxidative stress, impaired coronary microcirculation, and accumulation of advanced glycation end products (AGEs). Among various inflammatory responses, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome can induce the secretion of a large amount of pro-inflammatory cytokines through the cascade reaction of inflammation, subsequently mediating cellular pyroptosis and promoting myocardial damage. Currently, extensive experimental studies on traditional Chinese medicine (TCM) have been conducted in China and abroad based on the significant role of the NLRP3 inflammasome in the prevention and treatment of DCM. These studies have demonstrated that Chinese medicinal extracts, such as
Astragalus
polysaccharide and ginsenoside Rb
1
, single drugs like Coriolus and Cordyceps, and Chinese medicinal formulas like Didangtang and modified Taohe Chengqitang, as well as acupuncture and TCM exercise therapy, can regulate the relevant pathways of the NLRP3 inflammasome to inhibit its assembly or activation, reduce inflammatory responses, inhibit myocardial remodeling in DCM, and improve cardiac function. This article reviewed the relationship between the NLRP3 inflammasome and DCM, as well as the research progress on TCM in exerting anti-inflammatory effects in this field, aiming to provide new insights for the development of therapeutic approaches for DCM.
NOD样受体蛋白3(NLRP3)炎症小体糖尿病心肌病中医药
NOD-like receptor protein 3 (NLRP3) inflammasomediabetic cardiomyopathytraditional Chinese medicine
LIN X,XU Y,PAN X,et al.Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025[J].Sci Rep,2020,10(1):14790.
JIA G,HILL M A,SOWERS J R.Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity[J].Circ Res,2018,122(4):624-638.
WANG M,LI Y,LI S,et al.Endothelial dysfunction and diabetic cardiomyopathy[J].Front Endocrinol (Lausanne),2022,13:851941.
GULSIN G S,ATHITHAN L,MCCANN G P.Diabetic cardiomyopathy: Prevalence, determinants and potential treatments[J].Ther Adv Endocrinol Metab,2019,10:2042018819834869.
RUBLER S,DLUGASH J,YUCEOGLU Y Z,et al.New type of cardiomyopathy associated with diabetic glomerulosclerosis[J].Am J Cardiol,1972,30(6):595-602.
FALCÃO-PIRES I,LEITE-MOREIRA A F.Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment[J].Heart Fail Rev,2012,17(3):325-344.
GOYAL B R,MEHTA A A.Diabetic cardiomyopathy: Pathophysiological mechanisms and cardiac dysfuntion[J].Hum Exp Toxicol,2013,32(6):571-590.
TARQUINI R,LAZZERI C,PALA L,et al.The diabetic cardiomyopathy[J].Acta Diabetol,2011,48(3):173-181.
LU Y,LU Y,MENG J,et al.Pyroptosis and its regulation in diabetic cardiomyopathy[J].Front Physiol,2021,12:791848.
LI X,LI Z,LI B,et al.Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway[J].Life Sci,2019,234:116773.
SWANSON K V,DENG M,TING J P.The NLRP3 inflammasome: Molecular activation and regulation to therapeutics[J].Nat Rev Immunol,2019,19(8):477-489.
REN G,ZHANG X,XIAO Y,et al.ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination[J].EMBO J,2019,38(6):e100376.
SHAO B Z,XU Z Q,HAN B Z,et al.NLRP3 inflammasome and its inhibitors: A review[J].Front Pharmacol,2015,6:262.
BIASIZZO M,KOPITAR-JERALA N.Interplay between NLRP3 inflammasome and autophagy[J].Front Immunol,2020,11:591803.
WANG L,HAUENSTEIN A V.The NLRP3 inflammasome: Mechanism of action, role in disease and therapies[J].Mol Aspects Med,2020,76:100889.
JIN X,MA Y,LIU D,et al.Role of pyroptosis in the pathogenesis and treatment of diseases[J].Med Comm (2020),2023,4(3):e249.
WANI K,ALHARTHI H,ALGHAMDI A,et al.Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders[J].Int J Environ Res Public Health,2021,18(2):511.
JO E K,KIM J K,SHIN D M,et al.Molecular mechanisms regulating NLRP3 inflammasome activation[J].Cell Mol Immunol,2016,13(2):148-159.
LEU S Y,TSANG Y L,HO L C,et al.NLRP3 inflammasome activation, metabolic danger signals, and protein binding partners[J].J Endocrinol,2023,257(2)
WEI S,FENG M,ZHANG S.Molecular characteristics of cell pyroptosis and its inhibitors: A review of activation, regulation, and inhibitors[J].Int J Mol Sci,2022,23(24):16115.
WANG K,SUN Q,ZHONG X,et al.Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J].Cell,2020,180(5):941-955.
DING J,WANG K,LIU W,et al.Pore-forming activity and structural autoinhibition of the gasdermin family[J].Nature,2016,535(7610):111-116.
PATEL S.Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation[J].Curr Allergy Asthma Rep,2018,18(11):63.
TULETA I,FRANGOGIANNIS N G.Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities[J].Adv Drug Deliv Rev,2021,176:113904.
RITCHIE R H,ABEL E D.Basic mechanisms of diabetic heart disease[J].Circ Res,2020,126(11):1501-1525.
ZHANG L,AI C,BAI M,et al.NLRP3 Inflammasome/pyroptosis: A key driving force in diabetic cardiomyopathy[J].Int J Mol Sci,2022,23(18):10632.
SUN Y,DING S.NLRP3 Inflammasome in diabetic cardiomyopathy and exercise intervention[J].Int J Mol Sci,2021,22(24):13228.
BENZLER J,GANJAM G K,PRETZ D,et al.Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance[J].Diabetes,2015,64(6):2015-2027.
PALOMER X,SALVADÓ L,BARROSO E,et al.An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy[J].Int J Cardiol,2013,168(4):3160-3172.
SURYAVANSHI S V,KULKARNI Y A.NF-κβ: A potential target in the management of vascular complications of diabetes[J].Front Pharmacol,2017,8:798.
PENG M L,FU Y,WU C W,et al.Signaling pathways related to oxidative stress in diabetic cardiomyopathy[J].Front Endocrinol (Lausanne),2022,13:907757.
MARTINON F.Signaling by ROS drives inflammasome activation[J].Eur J Immunol,2010,40(3):616-619.
KIM T H,KIM M K,CHEONG Y H,et al.Hepatic role in an early glucose-lowering effect by a novel dipeptidyl peptidase 4 inhibitor, evogliptin, in a rodent model of type 2 diabetes[J].Eur J Pharmacol,2016,771:65-76.
BROOKES P S,YOON Y,ROBOTHAM J L,et al.Calcium, ATP, and ROS: A mitochondrial love-hate triangle[J].Am J Physiol Cell Physiol,2004,287(4):C817-833.
BAE J Y,PARK H H.Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly[J].J Biol Chem,2011,286(45):39528-39536.
ZHOU R,TARDIVEL A,THORENS B,et al.Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].Nat Immunol,2010,11(2):136-140.
LUO B,HUANG F,LIU Y,et al.NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy[J].Front Physiol,2017,8:519.
NISHIKAWA T,EDELSTEIN D,BROWNLEE M.The missing link: A single unifying mechanism for diabetic complications[J].Kidney Int Suppl,2000,77:S26-30.
ARIOZ B I,TASTAN B,TARAKCIOGLU E,et al.Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway[J].Front Immunol,2019,10:1511.
ABBRACCHIO M P,BURNSTOCK G.Purinergic signalling: Pathophysiological roles[J].JPN J Pharmacol,1998,78(2):113-145.
NORTH R A.Molecular physiology of P2X receptors[J].Physiol Rev,2002,82(4):1013-1067.
GORDON J L.Extracellular ATP: Effects, sources and fate[J].Biochem J,1998,29(2):115-119.
MUÑOZ-PLANILLO R,KUFFA P,MARTÍNEZ-COLÓN G,et al.K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter[J].Immunity,2013,38(6):1142-1153.
TANG T,LANG X,XU C,et al.CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation[J].Nat Commun,2017,8(1):202.
PELEGRIN P,SURPRENANT A.Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor[J].EMBO J,2006,25(21):5071-5082.
TSCHOPP J,SCHRODER K.NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?[J].Nat Rev Immunol,2010,10(3):210-215.
LIU C,YAO Q,HU T,et al.Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J].Mol Ther Nucleic Acids,2022,30:198-207.
HORNG T.Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome[J].Trends Immunol,2014,35(6):253-261.
LEE G S,SUBRAMANIAN N,KIM A I,et al.The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP[J].Nature,2012,492(7427):123-127.
MURAKAMI T,OCKINGER J,YU J,et al.Critical role for calcium mobilization in activation of the NLRP3 inflammasome[J].Proc Natl Acad Sci USA,2012,109(28):11282-11287.
LI W,CAO T,LUO C,et al.Crosstalk between ER stress, NLRP3 inflammasome, and inflammation[J].Appl Microbiol Biotechnol,2020,104(14):6129-6140.
LAUDISI F,SPREAFICO R,EVRARD M,et al.Cutting edge: The NLRP3 inflammasome links complement-mediated inflammation and IL-1β release[J].J Immunol,2013,191(3):1006-1010.
SHARIF H,WANG L,WANG W L,et al.Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J].Nature,2019,570(7761):338-343.
ELMADBOUH I,SINGLA D K.BMP-7 attenuates inflammation-induced pyroptosis and improves cardiac repair in diabetic cardiomyopathy[J].Cells,2021,10(10):2640.
GREEN J P,YU S,MARTÍN-SÁNCHEZ F,et al.Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming[J].Proc Natl Acad Sci USA,2018,115(40):E9371-E9380.
MIZUSHIMA N.The pleiotropic role of autophagy: From protein metabolism to bactericide[J].Cell Death Differ,2005,12(Suppl 2):1535-1541.
KOBAYASHI S,XU X,CHEN K,et al.Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury[J].Autophagy,2012,8(4):577-592.
DEWANJEE S,VALLAMKONDU J,KALRA R S,et al.Autophagy in the diabetic heart:A potential pharmacotherapeutic target in diabetic cardiomyopathy[J].Ageing Res Rev,2021,68:101338.
LAWLOR K E,KHAN N,MILDENHALL A,et al.RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL[J].Nat Commun,2015,6:6282.
LIU Q,DENG C,XING X,et al.Silencing RIPK1/mTORC1 signalling attenuated the inflammation and oxidative stress in diabetic cardiomyopathy[J].Exp Cell Res,2023,422(2):113417.
李用粹.证治汇补[M].上海:上海卫生出版社,1958:5.
DU Y,WAN H,HUANG P,et al.A critical review of Astragalus polysaccharides:From therapeutic mechanisms to pharmaceutics[J].Biomed Pharmacother,2022,147:112654.
CHEN W,JU J,YANG Y,et al.Astragalus polysaccharides protect cardiac stem and progenitor cells by the inhibition of oxidative stress-mediated apoptosis in diabetic hearts[J].Drug Des Devel Ther,2018,12:943-954.
叶婷,马国庆,魏明慧,等.黄芪多糖对糖尿病心肌病大鼠AMPK-mTOR通路的调控机制研究[J].世界中医药,2022,17(7):977-982.
杨嫒萍,张磊,李炜,等.黄芪甲苷对糖尿病心肌病小鼠的治疗作用及其机制[J].山东医药,2022,62(23):19-24.
LIN Z,XIE R,ZHONG C,et al.Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer[J].J Ginseng Res,2022,46(1):39-53.
QIN Q,LIN N,HUANG H,et al.Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats[J].Diabetes Metab Syndr Obes,2019,12:1091-1103.
QIN L,WANG J,ZHAO R,et al.Ginsenoside-Rb1 improved diabetic cardiomyopathy through regulating calcium signaling by alleviating protein O-glcNAcylation[J].J Agric Food Chem,2019,67(51):14074-14085.
ZHOU Y X,ZHANG H,PENG C.Puerarin: A review of pharmacological effects[J].Phytother Res,2014,28(7):961-975.
YIN M S,ZHANG Y C,XU S H,et al.Puerarin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of inflammation[J].J Asian Nat Prod Res,2019,21(5):476-493.
SUN S,DAWUTI A,GONG D,et al.Puerarin-V improve mitochondrial respiration and cardiac function in a rat model of diabetic cardiomyopathy via inhibiting pyroptosis pathway through P2X7 receptors[J].Int J Mol Sci,2022,23(21)
ZHANG H,CHEN X,ZONG B,et al.Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation[J].J Cell Mol Med,2018,22(9):4437-4448.
杨张良,徐慧琳,程茵,等.熊果酸对糖尿病小鼠心肌病变的作用及其机制[J].中国应用生理学杂志,2018,34(4):309-312,339.
WEN Y,GENG L,ZHOU L,et al.Betulin alleviates on myocardial inflammation in diabetes mice via regulating Siti1/NLRP3/NF-κB pathway[J].Int Immunopharmacol,2020,85:106653.
GAO G,FU L,XU Y,et al.Cyclovirobuxine D ameliorates experimental diabetic cardiomyopathy by inhibiting cardiomyocyte pyroptosis via NLRP3 in vivo and in vitro[J].Front Pharmacol,2022,13:906548.
LIANG E,LIU X,DU Z,et al.Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and NF-κB-mediated inflammation[J].Oxid Med Cell Longev,2018,2018:9086747.
WEN H L,LIANG Z S,ZHANG R,et al.Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy[J].Cardiovasc Diabetol,2013,12:50.
何夕松,李家富,程圣杰,等.柚皮素通过抑制NLRP3炎症小体激活改善糖尿病小鼠心肌重构[J].重庆医科大学学报,2020,45(12):1689-1695.
杨卫杰,曹晶晶.桑叶总黄酮经自噬途径抑制NLRP3炎症小体对糖尿病心肌病大鼠心肌的影响[J].中国老年学杂志,2022,42(14):3570-3573.
李雪莲,李智洋,李宾公,等.槲皮素抑制糖尿病大鼠炎症小体激活并减轻心肌损伤[J].中国病理生理杂志,2019,35(8):1345-1351.
XU L,CHEN R,ZHANG X,et al.Scutellarin protects against diabetic cardiomyopathy via inhibiting oxidative stress and inflammatory response in mice[J].Ann Palliat Med,2021,10(3):2481-2493.
YOUSSEF M E,ABDELRAZEK H M,MOUSTAFA Y M.Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats[J].Naunyn Schmiedebergs Arch Pharmacol,2021,394(1):11-31.
LIAN Y,XIA X,ZHAO H,et al.The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice[J].Biomed Pharmacother,2017,93:1175-1189.
朱敏航,李紫薇,陈玄立,等.无患子皂苷对高糖诱导H9C2心肌细胞损伤的保护作用[J].亚太传统医药,2019,15(12):9-12.
WANG Y,LI H,LI Y,et al.Coriolus versicolor alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation[J].Phytother Res,2019,33(10):2737-2748.
GU Y Y,WANG H,WANG S,et al.Effects of Cordyceps sinensis on the expressions of NF-κB and TGF-β1 in myocardium of diabetic rats[J].Evid Based Complement Alternat Med,2015,2015:369631.
吕元军,王卓,崔壮,等.发酵虫草菌粉对糖尿病大鼠心肌NLRP3表达的影响[J].天津医药,2017,45(8):856-859,前插2.
金莹.蒲公英水提取物改善糖尿病心肌病大鼠心肌损伤的机制研究[D].延吉:延边大学,2022.
KOSURU R,KANDULA V,RAI U,et al.Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats[J].Cardiovasc Drugs Ther,2018,32(2):147-163.
LIANG R K,ZHAO Y Y,SHI M L,et al.Skimmin protects diabetic cardiomyopathy in streptozotocin-induced diabetic rats[J].Kaohsiung J Med Sci,2021,37(2):136-144.
杨珍.海藻糖对糖尿病心肌病的保护作用[D].咸宁:湖北科技学院,2020.
YAO J,LI Y,JIN Y,et al.Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1α/SIRT3 pathways[J].Int Immunopharmacol,2021,96:107728.
YAO R,CAO Y,WANG C,et al.Taohuajing reduces oxidative stress and inflammation in diabetic cardiomyopathy through the sirtuin 1/nucleotide-binding oligomerization domain-like receptor protein 3 pathway[J].BMC Complement Med Ther,2021,21(1):78.
钟意,刘刚,马国平,等.养心定悸胶囊对糖尿病心肌病模型金黄地鼠的心肌保护作用[J].中国药房,2022,33(13):1573-1580.
尚鑫,任晓霞,陈栋,等.抵挡汤对糖尿病心肌病小鼠NLRP3炎症小体的作用及机制[J].中国实验方剂学杂志,2021,27(9):19-25.
于晓原,王艳丽,孙烨,等.参芪血府逐瘀汤对糖尿病心肌病的临床作用及机制[J].心脏杂志,2021,33(6):619-623.
张亚楠,丁英钧,徐华洲,等.加味桃核承气汤对糖尿病心肌病大鼠NLRP3炎症小体的影响[J].中国实验方剂学杂志,2022,28(16):59-65.
YAN M,LI L,WANG Q,et al.The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation[J].Biomed Pharmacother,2022,148:112709.
LI J Y,ZHAO C C,PENG J F,et al.The protective effect of Sheng Mai Yin on diabetic cardiomyopathy via NLRP3/Caspase-1 pathway[J].Evid Based Complement Alternat Med,2022,2022:1234434.
辛娟娟,赵玉雪,刘群,等.胆碱能抗炎通路介导针刺延缓高血压心肌重构新思路[J].针刺研究,2020,45(9):762-766.
YE Y,BIRNBAUM Y,WIDEN S G,et al.Acupuncture reduces hypertrophy and cardiac fibrosis, and improves heart function in mice with diabetic cardiomyopathy[J].Cardiovasc Drugs Ther,2020,34(6):835-848.
刘婷,李昱.互联网联合中医运动疗法应用于冠心病心脏康复的研究进展[J].中国中医药现代远程教育,2022,20(19):200-202.
KAR S,SHAHSHAHAN H R,HACKFORT B T,et al.Exercise training promotes cardiac hydrogen sulfide biosynthesis and mitigates pyroptosis to prevent high-fat diet-induced diabetic cardiomyopathy[J].Antioxidants (Basel),2019,8(12):638.
赵奕凯.NLRP3炎症小体在糖尿病心肌病(DCM)中作用机制的研究进展[J].复旦学报:医学版,2020,47(1):117-121.
0
Views
26
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution