浏览全部资源
扫码关注微信
1.北京中医药大学 东直门医院,北京 100700
2.北京中医药大学 科技处,北京 100029
3.教育部高等学校学科创新引智基地,北京 100029
4.北京中医药大学 生命科学学院,北京 100029
5.北京中医药大学 中医学院,北京 100029
6.北京中医药大学 中医养生学北京市重点实验室,北京 100029
7.科技部中医药防治糖尿病国际联合研究中心,北京 100029
Published:05 May 2023,
Published Online:01 February 2023,
Received:21 September 2022,
扫 描 看 全 文
张亚奇,秦灵灵,白惠中等.基于网络药理学和实验验证探讨糖痹康颗粒治疗糖尿病周围神经病变的分子机制[J].中国实验方剂学杂志,2023,29(09):81-90.
ZHANG Yaqi,QIN Lingling,BAI Huizhong,et al.Molecular Mechanism of Tangbikang Granules Against Diabetic Peripheral Neuropathy: Based on Network Pharmacology and Experimental Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(09):81-90.
张亚奇,秦灵灵,白惠中等.基于网络药理学和实验验证探讨糖痹康颗粒治疗糖尿病周围神经病变的分子机制[J].中国实验方剂学杂志,2023,29(09):81-90. DOI: 10.13422/j.cnki.syfjx.20230722.
ZHANG Yaqi,QIN Lingling,BAI Huizhong,et al.Molecular Mechanism of Tangbikang Granules Against Diabetic Peripheral Neuropathy: Based on Network Pharmacology and Experimental Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(09):81-90. DOI: 10.13422/j.cnki.syfjx.20230722.
目的
2
基于网络药理学和体内实验验证探讨糖痹康颗粒治疗糖尿病周围神经病变的相关分子机制。
方法
2
通过中药系统药理学数据库与分析平台(TCMSP)平台查找糖痹康颗粒组方中各味中药所含的活性成分及其对应的靶点基因,TCMSP中未收录的中药则通过文献查询有效成分后通过SwissADME类药性分析后上传SwissTargetPrediction数据库预测相关靶点基因。通过GeneCard数据库收集糖尿病周围神经病变(DPN)的相关疾病靶点基因。将药物基因与疾病基因取交集获得糖痹康颗粒治疗DPN的核心靶点基因。将核心靶点基因上传Metascape平台进行基因本体(GO)、京都基因与基因组百科全书(KEGG)富集分析。高糖高脂饲料诱导加小剂量链脲佐菌素(STZ)腹腔注射建立糖尿病大鼠模型,成模后进行糖痹康颗粒高、中、低剂量组(2.5、1.25、0.625 g·kg
-1
)12周连续药物干预。通过功能学检测感觉神经传导速度(SNCV)电生理测定评估神经传导速度改变,坐骨神经苏木素-伊红(HE)染色光镜下观察组织形态评估神经损伤程度,实时荧光定量聚合酶链式反应(Real-time PCR)检测大鼠坐骨神经组织腺苷一磷酸活化蛋白激酶(AMPK)通路相关靶向分子的基因表达,蛋白免疫印迹法(Western blot)检测大鼠坐骨神经组织中AMPK、磷酸化腺苷一磷酸活化蛋白激酶(p-AMPK)的蛋白表达水平。
结果
2
筛选出槲皮素、山柰酚、
β-
谷甾醇、水蛭蝶啶A、豆甾醇、黄芩素等主要活性成分,主要作用于白细胞介素-6(IL-6)、肿瘤坏死因子(TNF)、蛋白激酶B(Akt)、JUN、HSP90AA1等关键靶点和AMPK、核转录因子-
κ
B(NF-
κ
B)、Janus 激酶/信号转导子与转录激活因子(JAK/STAT)等信号通路。分子对接结果表明
β
-谷甾醇、豆甾醇等药物活性成分与IL-6、TNF、JUN、HSP90AA1等作用靶点分子有较好的结合性。动物实验结果显示,与正常组比较,模型组大鼠坐骨神经SNCV显著降低(
P
<
0.01);有髓神经纤维排列紊乱、稀松,轴索断裂,甚至髓鞘脱失;坐骨神经AMPK
α
、AMPK
β
、过氧化物酶体增殖物激活受体
γ
共激活因子-1
α
(PGC-1
α
)、去乙酰化酶3(SirT3)、线粒体转录因子A(TFAM)mRNA表达及坐骨神经蛋白表达水平的p-AMPK/AMPK明显降低(
P
<
0.05,
P
<
0.01)。与模型组比较,糖痹康颗粒治疗后各组SNCV显著升高(
P
<
0.01);神经形态接近正常组,排列较为紧密;神经AMPK
α
、AMPK
β
、PGC-1
α
、SirT3、TFAM mRNA表达明显升高(
P
<
0.05,
P
<
0.01);糖痹康颗粒高、中剂量组p-AMPK/AMPK显著升高(
P
<
0.01),糖痹康颗粒低剂量组与模型组蛋白表达差异无统计学意义。
结论
2
糖痹康颗粒治疗DPN具有多通路-多靶点的特性,其机制可能与糖痹康颗粒激活并调控AMPK/PGC-1
α
/SirT3信号通路发挥对DPN的治疗作用相关,为后续糖痹康颗粒干预DPN更深入的研究提供实验依据。
Objective
2
To explore the mechanism of Tangbikang granules (TBK) against diabetic peripheral neuropathy (DPN) based on network pharmacology and
in-vivo
experiment.
Method
2
The active components in medicinals of TBK and their target genes were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The active components of the medicinals which are not included in TCMSP were searched from previous research. After the analysis of drug-likeness by SwissADME, the target genes of them were predicted with SwissTargetPrediction. DPN-related target genes were retrieved from GeneCards. The common targets of the disease and the prescription were the hub genes of TBK against DPN, which were uploaded to Metascape for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. High-sugar and high-fat diet and low-dose streptozotocin (STZ,
ip
) were employed to induce diabetes in rats, and then the model rats were respectively treated with low-dose (0.625 g·kg
-1
), medium-dose (1.25 g·kg
-1
), and high-dose (2.5 g·kg
-1
) TBK for 12 weeks. Sensory nerve conduction velocity (SNCV) was evaluated. After hematoxylin and eosin (HE) staining, the sciatic nerve was observed under light microscope to examine the nerve damage. Real-time PCR was performed to detect the gene expression of adenosine monophosphate-activated protein kinase (AMPK) pathway-related targets in rat sciatic nerve, and Western blot to measure the protein expression of AMPK and phosphorylated (p)-AMPK in rat sciatic nerve.
Result
2
The main active components of TBK, such as quercetin, kaempferol,
β
-sitosterol, leech pteridine A, stigmasterol, and baicalein were screened out, mainly acting on interleukin-6 (IL-6), tumor necrosis factor (TNF), protein kinase B (Akt), JUN, and HSP90AA1 and signaling pathways such as AMPK, nuclear factor-
κ
B (NF
-κ
B), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Molecular docking results showed that
β
-sitosterol and stigmasterol had high binding affinity with IL-6, TNF, JUN, and HSP90AA1. As for the animal experiment, compared with the normal group, model group had low SNCV of sciatic nerve (
P
<
0.01), disordered and loose myelinated nerve fibers with axonotmesis and demyelinization, low mRNA expression of AMPK
α
, AMPK
β
, peroxisome proliferator-activated receptor
γ
coactivator-1
α
(PGC-1
α
), Sirtuin 3 (SirT3), mitochondrial transcription factor A (TFAM), and low p-AMPK/AMPK ratio in sciatic nerve (
P
<
0.05,
P
<
0.01). Compared with the model group, TBK of the three doses raised the SNCV (
P
<
0.01), restored nerve morphology and nerve compactness, and increased the mRNA expression of AMPK
α
, AMPK
β
, PGC-1
α
, SirT3, and TFAM (
P
<
0.05,
P
<
0.01). The ratio of p-AMPK/AMPK in the high-dose and medium-dose TBK groups was higher than that in the model group (
P
<
0.01), while the protein expression in the low-dose TBK group was insignificantly different from that in the model group.
Conclusion
2
TBK exerts therapeutic effect on DPN through multiple pathways and targets. The mechanism is that it activates and regulates AMPK/PGC-1
α
/SirT3 signaling, which lays a basis for further study of TBK in the treatment of DPN.
糖痹康颗粒网络药理学糖尿病周围神经病变动物实验分子机制系统药理学数据库与分析平台(TCMSP)SwissTargetPrediction数据库
Tangbikang granulesnetwork pharmacologydiabetic peripheral neuropathyanimal experimentsmolecular mechanismTraditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP)SwissTargetPrediction
CALLAGHAN B C, PRICE R S, CHEN K S, et al. The importance of rare subtypes in diagnosis and treatment of peripheral neuropathy: A review[J]. JAMA Neurol, 2015, 72(12): 1510-1518.
FELDMAN E L,CALLAGHAN B C,POP-BUSUI R,et al.Diabetic neuropathy[J].Nat Rev Dis Primers,2019,5(1):42.
祁悦, 张杰. 中医药治疗糖尿病周围神经病变的临床研究进展[J]. 时珍国医国药, 2021, 32(2): 428-432.
中华中医药学会糖尿病分会.糖尿病周围神经病变中医临床诊疗指南(2016年版)[J].中医杂志,2017,58(7):625-630.
吕翠岩, 张胜容, 赵文景, 等. 糖痹康治疗糖尿病周围神经病变的临床研究[J]. 天津中医药, 2016, 33(1): 5-9.
易文明, 孙文, 郭翔宇, 等. 糖痹康对糖尿病周围神经病变大鼠氧化应激及细胞凋亡的影响[J]. 环球中医药, 2015, 8(7): 798-802.
穆晓红, 刘铜华, 孙文, 等. 糖痹康对高糖培养雪旺细胞自噬相关蛋白的影响[J]. 中国实验方剂学杂志, 2018, 24(10): 90-94.
张岩, 穆晓红, 孙文, 等. 糖痹康对糖尿病大鼠坐骨神经Keap1/Nrf2信号的作用机制[J]. 中华中医药杂志, 2016, 31(5): 1822-1827.
YANG X W, LIU F Q, GUO J J, et al. Antioxidation and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy[J]. BMC Complement Altern Med, 2015, doi: 10.1186/s12906-015-0600-0http://dx.doi.org/10.1186/s12906-015-0600-0.
YANG X,YAO W,LI Q,et al.Mechanism of Tang Luo Ning effect on attenuating of oxidative stress in sciatic nerve of STZ-induced diabetic rats[J].J Ethnopharmacol,2015,174:1-10.
SLOAN G, SELVARAJAH D, TESFAYE S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy[J]. Nat Rev Endocrinol, 2021, 17(7): 400-420
付娟, 杨世海, 黄林芳. 超高效液相色谱法同时测定黄芪中6种黄酮类成分的含量[J]. 中国药学杂志, 2013, 48(11): 916-919.
赵丽敏,卢广英,杨书娟,等.基于酚类成分特征图谱的女贞子质量表征研究[J].北京中医药大学学报,2016,39(6):480-488.
王瑞, 侴桂新, 朱恩圆, 等. 川赤芍化学成分研究[J]. 中国药学杂志, 2007,42(9): 661-663.
蔡芷辰, 李振麟, 徐谦, 等. 桂枝的化学成分分析[J]. 中国实验方剂学杂志, 2014, 20(22): 57-60.
巢志茂,张楠,唐春风,等.36种油性中药不皂化物的薄层色谱鉴别研究[J].中国实验方剂学杂志,2012,18(3):79-83.
周胜男,邓瑞雪,赵爽,等.HPLC法测定黄芩中8个黄酮类成分的含量[J].化学研究与应用,2022,34(8):1920-1926.
王星, 李彩娜, 申竹芳. 黄芩素对糖尿病周围神经病变保护作用机制研究进展[J]. 中国临床药理学杂志, 2018, 34(1): 70-72,76.
CHAUDHURY S,KEEGAN B M,BLAGG B.The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies[J].Med Res Rev,2021,41(1):202-222.
CHOWDHURY S K,DOBROWSKY R T,FERNYHOUGH P.Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes[J].Mitochondrion,2011,11(6):845-854.
DEWANJEE S, DAS S, DAS A K, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets[J]. Eur J Pharmacol, 2018, 833: 472-523.
BEN Y, HAO J, ZHANG Z H, et al. Astragaloside Ⅳ inhibits mitochondrial-dependent apoptosis of the dorsal root ganglion in diabetic peripheral neuropathy rats through modulation of the SIRT1/p53 signaling pathway[J]. Diabetes Metab Syndr Obes, 2021, 14: 1647-1661.
吕翠岩, 张胜容, 徐暾海, 等. 中药复方糖痹康对糖尿病大鼠坐骨神经TNF-α-NF-κB途径的影响[J]. 中华中医药杂志, 2016, 31(6): 2116-2119.
吕翠岩, 张胜容, 徐暾海, 等.糖痹康对糖尿病周围神经病变大鼠坐骨神经NF-κB-IκB信号通路的影响[J]. 中华中医药学刊, 2016, 34(1): 27-29.
DODINGTON D W, DESAI H R, WOO M. JAK/STAT-emerging players in metabolism[J]. Trends Endocrinol Metab, 2018, 29(1): 55-65.
CHOWDHURY S R, SALEH A, AKUDE E, et al. Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents[J]. Cell Mol Neurobiol, 2014, 34(5): 643-649.
赵丽荣, 苏秀兰, 陈良光, 等. PPAR-γ及PGC-1的作用机制及基因多态性研究进展[J]. 内蒙古医学院学报, 2010, 32(4): 426-429.
FEIGE J N, AUWERX J. Transcriptional coregulators in the control of energy homeostasis[J]. Trends Cell Biol, 2007, 17 (6) : 292-301.
FERNYHOUGH P.Mitochondrial dysfunction in diabetic neuropathy: A series of unfortunate metabolic events[J].Curr Diab Rep,2015,15(11):89.
AGHANOORI M R,SMITH D R,SHARIATI-IEVARI S,et al.Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes[J].Mol Metab,2019,20:149-165.
YU X,ZHANG L,YANG X,et al.Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1α-Sirt3 axis[J].Molecules,2012,17(9):11216-11228.
ZHANG C L,FENG H,LI L,et al.Globular CTRP3 promotes mitochondrial biogenesis in cardiomyocytes through AMPK/PGC-1α pathway[J].Biochim Biophys Acta Gen Subj,2017,1861(1 Pt A):3085-3094.
GUO X,JIANG Q,TUCCITTO A,et al.The AMPK-PGC-1α signaling axis regulates the astrocyte glutathione system to protect against oxidative and metabolic injury[J].Neurobiol Dis,2018,113:59-69.
YERRA V G,KALVALA A K,SHERKHANE B,et al.Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy[J].Neuropharmacology,2018,131:256-270.
ZHOU X,CHEN M,ZENG X,et al.Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells[J].Cell Death Dis,2014,5(12):e1576.
LIU S G,WANG Y M,ZHANG Y J,et al.ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway[J].Neurochem Int,2017,108:230-237.
任艳, 邓燕君, 马焓彬, 等. 网络药理学在中药领域的研究进展及面临的挑战[J]. 中草药, 2020, 51(18): 4789-4797.
0
Views
22
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution