浏览全部资源
扫码关注微信
1.陕西中医药大学 第一临床医学院,陕西 咸阳 712046
2.北京中医药大学 教育部中医养生学重点实验室, 北京 100029
3.北京中医药大学 东直门医院, 北京 100700
4.成都中医药大学, 成都 610075
Published:05 May 2023,
Published Online:31 January 2023,
Received:23 October 2022,
扫 描 看 全 文
杨鹏,张程斐,张亚奇等.p38 MAPK通路在糖尿病周围神经病变中的作用及中药干预的研究进展[J].中国实验方剂学杂志,2023,29(09):99-108.
YANG Peng,ZHANG Chengfei,ZHANG Yaqi,et al.Role of p38 MAPK Pathway in Diabetic Peripheral Neuropathy and Chinese Medicine Intervention: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(09):99-108.
杨鹏,张程斐,张亚奇等.p38 MAPK通路在糖尿病周围神经病变中的作用及中药干预的研究进展[J].中国实验方剂学杂志,2023,29(09):99-108. DOI: 10.13422/j.cnki.syfjx.20230725.
YANG Peng,ZHANG Chengfei,ZHANG Yaqi,et al.Role of p38 MAPK Pathway in Diabetic Peripheral Neuropathy and Chinese Medicine Intervention: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(09):99-108. DOI: 10.13422/j.cnki.syfjx.20230725.
糖尿病周围神经病变(DPN)是指糖尿病患者在排除其他原因后发生的周围神经功能障碍的症状和/或体征,DPN是糖尿病最常见的并发症之一,后期可导致残疾、足部溃疡、截肢等。其发病机制与高糖诱导的神经组织的炎症损伤、氧化应激、线粒体障碍,细胞凋亡关系密切。p38丝裂原活化蛋白激酶(p38 MAPK)信号通路是介导DPN神经组织炎症因子、氧化因子、凋亡因子表达等关键机制,高糖等因子激活p38 MAPK的磷酸化驱动诱发的炎症反应、氧化应激损伤和细胞凋亡,引起细胞脂质过氧化、蛋白质修饰、核酸受损,导致轴突变性和脱髓鞘改变。目前西医药治疗DPN存在明显不良反应、成瘾倾向等不足。近年来中医药在DPN的防治中的研究逐渐增多,中药干预p38 MAPK通路转导改善DPN的探索也取得了一定进展。该文搜集国内外近10年来关于p38 MAPK通路与胰岛素抵抗和周围神经病变的关系、其在DPN病理进程中参与炎症调节、氧化应激、多元醇途径调控、雪旺细胞凋亡等分子生物学机制进行归纳梳理总结;也对中药单体、中成药及中药复方基于p38 MAPK通路抑制DPN周围神经炎症反应、氧化损伤、细胞凋亡反应等途径,抗神经轴突变性和脱髓鞘改变,改善感觉神经和运动神经异常,减轻外周疼痛敏化,促进神经传导机制的相关文献进行整理,以期为临床防治DPN新药的开发提供参考和方向。
Diabetic peripheral neuropathy (DPN) is a symptom and/or sign of peripheral nerve dysfunction that occurs in patients with diabetes mellitus when other causes are excluded. DPN, one of the most common complications of diabetes mellitus, can lead to disability, foot ulcers, and amputation at a later stage. Its pathogenesis is closely related to high glucose-induced inflammatory damage, oxidative stress, mitochondrial disorders, and apoptosis in neural tissues. The p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is a key mechanism mediating the expression of inflammatory factors, oxidative factors, and apoptotic factors of neural tissues in DPN. The inflammatory response, oxidative stress damage, and apoptosis, induced by the activation of p38 MAPK phosphorylation by factors such as high glucose, can cause cell lipid peroxidation, protein modification, and nucleic acid damage, which results in axonal degeneration and demyelination changes. The current treatment of DPN with western medicine has obvious shortcomings such as adverse effects and addictive tendencies. In recent years, the research on traditional Chinese medicine (TCM) in the prevention and treatment of DPN has gradually increased, and the exploration of Chinese medicine intervention in the p38 MAPK pathway transduction to improve DPN has advanced. The present study reviewed the relations of the p38 MAPK pathway with insulin resistance and peripheral neuropathy and summarized the molecular biological mechanisms involved in the pathological process of DPN, such as inflammation regulation, oxidative stress, polyol pathway regulation, and Schwann cell apoptosis in the past 10 years. In addition, the literature on Chinese medicine monomers, Chinese patent medicines, and Chinese medicine compounds in inhibiting inflammatory reactions, oxidative injury, and apoptosis of DPN peripheral nerves based on the p38 MAPK pathway, resisting axonal degeneration and demyelination changes, improving sensory and motor abnormalities, relieving peripheral pain sensitization, and facilitating nerve conduction mechanism to provide references for the development of new drugs for clinical prevention and treatment of DPN.
糖尿病周围神经病变炎症氧化应激细胞凋亡p38丝裂原活化蛋白激酶(p38 MAPK)中药机制研究进展
diabetic peripheral neuropathyinflammationoxidative stressapoptosisp38 mitogen-activated protein kinase (p38 MAPK)Chinese medicinemechanismresearch progress
HOLMES C J, HASTINGS M K. The Application of exercise training for diabetic peripheral neuropathy[J]. J Clin Med,2021, 28,10(21):5042.
YU Y. Gold standard for diagnosis of DPN[J]. Front Endocrinol (Lausanne), 2021, 12:719356.
TAY J S, KIM Y J. Efficacy of moxibustion in diabetes peripheral neuropathy[J]. Medicine (Baltimore), 2021,100(49):e28173.
LIU X,XU Y,AN M,et al.The risk factors for diabetic peripheral neuropathy: A Meta-analysis[J].PLoS One,2019,14(2):e0212574.
RAFIULLAH M, SIDDIQUI K. Pharmacological treatment of diabetic peripheral neuropathy: An update[J]. CNS Neurol Disord Drug Targets, 2022,21(10):884-900.
KHDOUR M R. Treatment of diabetic peripheral neuropathy: A review[J]. J Pharm Pharmacol, 2020,72(7):863-872.
ROMÁN-PINTOS L M, VILLEGAS-RIVERA G, RODRÍGUEZ-CARRIZALEZ A D, et al. Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function[J]. J Diabetes Res,2016,2016:3425617.
HU H Q, HUANG H, HUANG J, et al. Case report: Successful outcome for refractory diabetic peripheral neuropathy in patients with ultrasound-guided injection treatment[J]. Front Endocrinol (Lausanne),2021,12:735132.
FAN J, JEFFERY M M, HOOTEN W M, et al. Trends in pain medication initiation among patients with newly diagnosed diabetic peripheral neuropathy, 2014-2018[J]. JAMA Netw Open, 2021,4(1):e2035632.
JINGXUAN L,LITIAN M,JIANFANG F. Different drugs for the treatment of painful diabetic peripheral neuropathy: A Meta-analysis[J].Front Neurol,2021,12:682244.
SUN Y, LIU W Z, LIU T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. J Recept Signal Transduct Res,2015,35(6):600-604.
GUO Y J, PAN W W, LIU S B, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020,19(3):1997-2007.
BONNEY E A. Mapping out p38 MAPK[J]. Am J Reprod Immunol, 2017,77(5):12652.
COULTHARD L R,WHITE D E,JONES D L,et al. p38(MAPK): Stress responses from molecular mechanisms to therapeutics[J].Trends Mol Med,2009,15(8):369-379.
CUADRADO A,NEBREDA A R.Mechanisms and functions of p38 MAPK signalling[J].Biochem J,2010,429(3):403-417.
GE B,GRAM H,DI PADOVA F,et al.MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha[J].Science,2002,295(5558):1291-1294.
REMY G,RISCO A M,IÑESTA-VAQUERA F A,et al. Differential activation of p38 MAPK isoforms by MKK6 and MKK3[J].Cell Signal,2010,22(4):660-667.
RISTIKJ-STOMNAROSKA D,RISTESKA-NEJASHMIKJ V,PAPAZOVA M.Role of inflammation in the pathogenesis of diabetic peripheral neuropathy[J].Open Access Maced J Med Sci,2019,7(14):2267-2270.
LIU Y P,SHAO S J,GUO H D.Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy[J].Life Sci,2020,248:117459.
SEKIGUCHI F,DOMOTO R,NAKASHIMA K,et al.Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk[J].Neuropharmacology,2018,141:201-213.
SHI M,ZHANG X,ZHANG R,et al. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity[J].J Biomed Res,2022,36(3):181-194.
ORTMANN K L,CHATTOPADHYAY M. Decrease in neuroimmune activation by HSV-mediated gene transfer of TNFα soluble receptor alleviates pain in rats with diabetic neuropathy[J].Brain Behav Immun,2014,41:144-151.
ZHANG D,LI X,JING B,et al. α-Asarone attenuates chronic sciatica by inhibiting peripheral sensitization and promoting neural repair[J].Phytother Res,2023,37(1):151-162.
GUO Y,XU X,HUANG J,et al. The actions and mechanisms of P2X7R and p38 MAPK activation in mediating bortezomib-induced neuropathic pain[J].Biomed Res Int,2020,2020:8143754.
XU S,YI Y,WANG Y,et al.Dexmedetomidine alleviates neuropathic pain via the TRPC6-p38 MAPK pathway in the dorsal root ganglia of rats[J].J Pain Res,2022,15:2437-2448.
YE G,LIN C,ZHANG Y,et al. Quercetin alleviates neuropathic pain in the rat CCI model by mediating AMPK/MAPK pathway[J].J Pain Res,2021,14:1289-1301.
WANG C,ZHANG H X,XING H Y,et al.Oxymatrine alleviates oxidative stress in fat-induced insulin resistance mice by suppressing p38 MAPK pathway[J]. Chin J Chin Mater Med,2016,41(15):2872-2876.
TANG Z,XIA N,YUAN X,et al.PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38 MAPK in HepG2 cells[J]. Biochem Biophys Res Commun,2015,465(4):670-677.
FENG W,DING Y,ZHANG W,et al. Chromium malate alleviates high-glucose and insulin resistance in L6 skeletal muscle cells by regulating glucose uptake and insulin sensitivity signaling pathways[J].Biometals,2018,31(5):891-908.
FANG P,SUN Y,GU X,et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway[J].Phytomedicine,2019,64:153074.
ZHU Y, ZHANG H, WEI Y, et al. Pea-derived peptides, VLP, LLP, VA, and LL, improve insulin resistance in HepG2 cells via activating IRS-1/PI3K/Akt and blocking ROS-mediated p38 MAPK signaling[J]. J Food Biochem, 2020,44(11):e13454.
AL-LAHHAM R,DEFORD J H,PAPACONSTANTINOU J.Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38 MAPK stress response pathway[J].Mol Cell Endocrinol,2016,419:1-11.
GAO D,NONG S,HUANG X,et al.The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38 MAPK pathways[J].J Biol Chem,2010,285(39):29965-29973.
IMPELLIZZERI D,PERITORE A F,CORDARO M,et al.The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice[J].FASEB J,2019,33(10):11364-11380.
ABDELKADER N F,ELBASET M A,MOUSTAFA P E,et al. Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: A glucose-independent effect through AMPK signaling[J].Arch Pharm Res,2022,45(7):475-493.
ZHANG D,JING B,CHEN Z,et al. Ferulic acid alleviates sciatica by inhibiting peripheral sensitization through the RhoA/p38 MAPK signalling pathway[J].Phytomedicine,2022,106:154420.
SHIDA K,OHSAWA M,TAKAHASHI S,et al.Peripheral neuropathy in the pre-diabetic state of the type 2 diabetes mouse model (TSOD mice) involves TRPV1 expression in dorsal root ganglions[J].IBRO Neurosci Rep,2022,12:163-169.
LOW P A,NICKANDER K K,TRITSCHLER H J.The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy[J].Diabetes,1997,46(Suppl 2):S38-42.
PURVES T,MIDDLEMAS A,AGTHONG S,et al.A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy[J].FASEB J,2001,15(13):2508-2514.
MIDDLEMAS A,DELCROIX J D,SAYERS N M,et al. Enhanced activation of axonally transported stress-activated protein kinases in peripheral nerve in diabetic neuropathy is prevented by neurotrophin-3[J].Brain,2003,126(Pt 7):1671-1682.
TOMLINSON D R,GARDINER N J. Diabetic neuropathies: Components of etiology[J].J Peripher Nerv Syst,2008,13(2):112-121.
STAVNIICHUK R,SHEVALYE H,HIROOKA H,et al. Interplay of sorbitol pathway of glucose metabolism, 12/15-lipoxygenase, and mitogen-activated protein kinases in the pathogenesis of diabetic peripheral neuropathy[J].Biochem Pharmacol,2012,83(7):932-940.
PRICE S A,AGTHONG S,MIDDLEMAS A B,et al. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: Interactions with aldose reductase[J].Diabetes,2004,53(7):1851-1856.
LI Q R,WANG Z,ZHOU W,et al. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway[J].Neural Regen Res,2016,11(2):345-351.
OHI T, SAITA K, FURUKAWA S, et al. Therapeutic effects of aldose reductase inhibitor on experimental diabetic neuropathy through synthesis/secretion of nerve growth factor[J]. Exp Neurol, 1998,151(2):215-220.
SHINDO H,TAWATA M,AIDA K,et al.The role of cyclic adenosine 3',5'-monophosphate and polyol metabolism in diabetic neuropathy[J].J Clin Endocrinol Metab,1992,74(2):393-398.
CHENG X,NI B,ZHANG Z,et al.Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats[J].Connect Tissue Res,2013,54(2):118-122.
陈彦旭,何流,宋小彪,等.雪旺细胞凋亡与糖尿病周围神经病变的相关性[J].生命的化学,2022,42(1):27-33.
冉丽莎,吴亚曾,劳筱清,等.糖尿病周围神经病变细胞凋亡机制及中医药干预研究进展[J].中国实验方剂学杂志,2022,28(5):256-265.
FUKUNAGA M,MIYATA S,LIU B F,et al. Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells[J].Biochem Biophys Res Commun,2004,320(3):689-695.
FUKUNAGA M,MIYATA S,HIGO S,et al. Methylglyoxal induces apoptosis through oxidative stress-mediated activation of p38 mitogen-activated protein kinase in rat Schwann cells[J].Ann N Y Acad Sci,2005,1043:151-157.
JIA L,CHOPP M,WANG L,et al. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy[J].FASEB J,2018,32(12):fj201800597R.
LIU X,ZHAO Y,PENG S,et al. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells[J].Sci Rep,2016,6:31049.
SHI M, SONG J, CHEN Y N, et al. HMGB1 inhibition protects schwann cells from high glucose-induced cytotoxicity[J]. Diabetes,2022,71 (Supplement_1): 456.
DAULHAC L, MALLET C, COURTEIX C, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms[J]. Mol Pharmacol, 2006,70(4):1246-1254.
ZHANG X, SHEN L, HUANG Y G. Research advances in mitogen-activated protein kinases in central and peripheral sensitization of diabetic neuropathic pain[J]. Acta Academiae Medicinae Sinicae, 2019,41(1):118-123.
CHENG H T, DAUCH J R, HAYES J M, et al. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes[J]. Neurobiol Dis, 2012,45(1):280-287.
CHENG H T, DAUCH J R, OH S S, et al. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes[J]. Mol Pain, 2010,6:28.
AGTHONG S,TOMLINSON D R.Inhibition of p38 MAP kinase corrects biochemical and neurological deficits in experimental diabetic neuropathy[J].Ann N Y Acad Sci,2002,973:359-362.
中国医师协会中西医结合医师分会内分泌与代谢病学专业委员会.糖尿病周围神经病变病证结合诊疗指南[J].中医杂志,2021,62(18):1648-1656.
潘力,梁松. 通心络胶囊临床应用进展[J]. 现代中西医结合杂志,2012,21(14):1591-1593.
王超,张会欣,邢邯英,等.通心络胶囊抑制p38 MAPK磷酸化抑制糖尿病周围神经病变小鼠氧化应激[J].中国药理学通报,2015(5):726-729,730.
栗明,丁常宏. 乌芪通络胶囊对糖尿病周围神经病变大鼠背根神经节 JNK1/2和 p38 MAPK蛋白表达的影响[J]. 中医药学报,2014,42(2):26-28.
冯程程,叶婷,徐利娟,等.温通活血乳膏对2型糖尿病周围神经病变大鼠坐骨神经p-38MAPK的影响[J].时珍国医国药,2020,31(8):1824-1827.
丁亚琴,李琦,吴坚,等. 知葛通脉汤对糖尿病周围神经病变大鼠背根神经节MAPK/ERK通路的影响[J]. 四川中医,2019,37(10):33-36.
周密,姚伟洁. 木丹颗粒对糖尿病周围神经病变大鼠TLR4相关通路的调控作用研究[J]. 西部中医药,2021,34(10):52-56.
WANG F,TANG H,MA J,et al. The effect of Yiqi Huoxue Tongluo decoction on spinal cord microglia activation and ASK1-MKK3-p38 signal pathway in rats with diabetic neuropathic pain[J].Evid Based Complement Alternat Med,2022,2022:2408265.
暴鹏,李雪,孙丽莎,等. 补阳还五汤抑制TLR4信号通路减轻db/db糖尿病小鼠周围神经病变炎症反应[J]. 山西医科大学学报,2020,51(2):153-157.
吕翠岩,张胜容,徐暾海,等. 糖痹康对糖尿病大鼠坐骨神经p38丝裂素活化蛋白激酶及血浆肿瘤坏死因子-α表达的影响[J]. 中国中医药信息杂志,2016,23(3):67-69.
吕翠岩,张胜容,赵文景,等. 糖痹康对高糖环境下大鼠雪旺细胞p38 MAPK、TNF-α及sVCAM-1表达的影响[J]. 中华中医药杂志,2016,31(2):396-400.
倪洪岗,杨娟,李莉,等. 糖痹康对糖尿病大鼠背根神经节组织氧化应激、细胞凋亡的影响及机制[J]. 山东医药,2018,58(46):42-45.
李步满,高彦彬,夏晶,等. 糖络宁浸膏对糖尿病大鼠周围神经氧化应激及下游MAPKs信号转导通路的影响[J]. 中医杂志,2015,56(8):694-698.
朱雨菲,郭宇鑫,王利莹,等. 高糖环境下糖络宁对大鼠背根神经节神经元细胞凋亡水平及MAPKs信号通路的影响[J]. 中国医药导报,2022,19(4):9-13.
陈泽奇,李杰玉,黄娟,等. 加味补肝汤对糖尿病大鼠周围神经病变的保护作用及机制[J]. 山东医药,2010,50(4):9-11.
WANG Y,CHEN Z,YE R,et al.Protective effect of Jiaweibugan decoction against diabetic peripheral neuropathy[J].Neural Regen Res,2013,8(12):1113-1121.
ZHOU J,CHAN L,ZHOU S.Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease[J].Curr Med Chem,2012,19(21):3523-3531.
ZHOU J Y,ZHOU S W.Protection of trigonelline on experimental diabetic peripheral neuropathy[J].Evid Based Complement Alternat Med,2012,2012:164219.
GUPTA S,BUTTAR H S,KAUR G,et al.Baicalein: Promising therapeutic applications with special reference to published patents[J].Pharm Pat Anal,2022,11(1):23-32.
STAVNIICHUK R,DREL V R,SHEVALYE H,et al.Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation[J].Exp Neurol,2011,230(1):106-113.
CHENG L Z,ZHOU J M,MA J L,et al. Tetrahydropalmatine alleviated diabetic neuropathic pain by inhibiting activation of microglia via p38 MAPK signaling pathway[J]. Chin J Chin Mater Med,2022,47(9):2533-2540.
贾妙婷,李成义,孙天雄,等. 红芪多糖药理作用研究新进展[J]. 中药药理与临床,2020,36(6):235-239.
李圆,金智生,何流,等. 红芪多糖对糖尿病周围神经病变ob/ob小鼠丝裂原活化蛋白激酶信号通路的影响[J]. 中国临床药理学杂志,2021,37(21):2929-2932.
MADKOUR M M,ANBAR H S,EL-GAMAL M I.Current status and future prospects of p38α/MAPK14 kinase and its inhibitors[J].Eur J Med Chem,2021,213:113216.
0
Views
16
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution