浏览全部资源
扫码关注微信
中国中医科学院 西苑医院,北京 100091
Published:20 October 2023,
Published Online:04 August 2023,
Received:02 June 2023,
扫 描 看 全 文
石玉姣,杨琳,刘春秋等.苓桂气化方干预射血分数保留心力衰竭心肌纤维化的物质基础及分子机制[J].中国实验方剂学杂志,2023,29(20):20-29.
SHI Yujiao,YANG Lin,LIU Chunqiu,et al.Material Basis and Molecular Mechanism of Linggui Qihua Prescription Against Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):20-29.
石玉姣,杨琳,刘春秋等.苓桂气化方干预射血分数保留心力衰竭心肌纤维化的物质基础及分子机制[J].中国实验方剂学杂志,2023,29(20):20-29. DOI: 10.13422/j.cnki.syfjx.20231038.
SHI Yujiao,YANG Lin,LIU Chunqiu,et al.Material Basis and Molecular Mechanism of Linggui Qihua Prescription Against Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):20-29. DOI: 10.13422/j.cnki.syfjx.20231038.
目的
2
探讨苓桂气化方干预射血分数保留心力衰竭(HFpEF)心肌纤维化的物质基础及分子机制。
方法
2
采用液相色谱-质谱联用法(LC-MS)定性分析苓桂气化方的活性成分。使用AutoDock软件进行苓桂气化方的活性成分与目标蛋白
α
平滑肌肌动蛋白(
α
-SMA)、Ⅰ型胶原蛋白(ColⅠ)、Ⅲ型胶原蛋白(ColⅢ)、基质金属蛋白酶-9(MMP-9)及基质金属蛋白酶组织抑制因子-1(TIMP-1)之间的分子对接。进行体内实验:40只4周龄自发性高血压大鼠(SHR)平均分为HFpEF组、诺欣妥组(0.018 g·kg
-1
)、苓桂低剂量组(3.87 g·kg
-1
)及苓桂高剂量组(7.74 g·kg
-1
),给予高脂、高盐及高糖饮食16周和腹腔注射链脲霉素溶液8周建立HFpEF大鼠模型。10只WKY大鼠和10只SHR大鼠作为空白组。造模成功后,WKY、SHR及HFpEF组给予等剂量生理盐水,其他3组按照预先规定的干预措施,每天灌胃1次,持续6周。干预结束后,行超声心动图测量左心室(LV)前壁厚度(LVAWd)、LV后壁厚度(LVPWd)、LV舒张末内径(LVIDd)、LV射血分数(LVEF)、等容舒张时间(IVRT)、LV舒张早期二尖瓣流入峰值速度(E)及LV舒张早期二尖瓣环运动速度(e'),并计算E/e';采用酶联免疫吸附测定法(ELISA)检测血清心房钠尿肽(ANP)、B型利钠肽(BNP)及半乳糖凝集素-3(Gal-3);病理切片进行马松染色以观察心肌纤维化,并计算胶原体积分数(CVF)及血管周围纤维化比率(PFR);实时荧光定量聚合酶链式反应(Real-time PCR)及蛋白免疫印迹法(Western blot)检测LV心肌
α
-SMA、ColⅠ、ColⅢ、MMP-9、TIMP-1的mRNA及蛋白表达。
结果
2
LC-MS鉴定出苓桂气化方含有13种活性成分。分子对接提示13种化合物能稳固地与5个靶蛋白结合。体内实验证实:与空白组比较,HFpEF组的LVAWd、LVPWd、LVIDd、IVRT、E/e'、ANP、BNP、Gal-3、CVF及PFR显著升高,LV心肌
α
-SMA、ColⅠ、ColⅢ mRNA表达及蛋白表达显著上调,MMP-9/TIMP-1 mRNA及蛋白比例明显下调(
P
<
0.05,
P
<
0.01)。与HFpEF组比较,苓桂气化方可能呈剂量依赖性减少LVAWd、LVPWd、LVIDd、IVRT、E/e'、ANP、BNP、Gal-3、CVF及PFR,下调心肌
α
-SMA、ColⅠ、ColⅢ mRNA表达及
α
-SMA和ColⅠ蛋白表达,并上调MMP-9/TIMP-1的mRNA及蛋白表达(
P
<
0.05,
P
<
0.01)。
结论
2
苓桂气化方含有多种活性成分,可能抑制HFpEF大鼠的心肌纤维化,进一步减轻LV肥厚、扩大及舒张功能障碍,是治疗HFpEF的有效中药复方。
Objective
2
To explore the material basis and molecular mechanism of Linggui Qihua prescription (LGQH) against myocardial fibrosis in heart failure with preserved ejection fraction (HFpEF).
Method
2
Liquid chromatography-mass spectrometry (LC-MS) was used to qualitatively analyze the active components of LGQH. AutoDock software was employed for molecular docking between the active components of LGQH and target proteins including
α
-smooth muscle actin (
α
-SMA), type Ⅰ collagen (ColⅠ), type Ⅲ collagen (ColⅢ), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1).
In vivo
experiments were conducted on 40 spontaneously hypertensive rats (SHRs) aged 4 weeks, which were divided into an HFpEF group, an Entresto group (0.018 g·kg
-1
), and low- and high-dose LGQH groups (3.87, 7.74 g·kg
-1
). A high-fat, high-salt, and high-sugar diet was administered for 16 weeks along with intraperitoneal injection of streptozotocin solution for 8 weeks to establish an HFpEF model in rats. The blank group consisted of 10 Wistar Kyoto (WKY) rats and 10 SHRs. After successful modeling, the WKY, SHR, and HFpEF groups were given equal volumes of normal saline, while the other three groups received predetermined interventions. Daily oral gavage was performed for 6 weeks. After intervention, echocardiography was conducted to measure left ventricular (LV) anterior wall thickness (LVAWd), LV posterior wall thickness (LVPWd), LV internal diameter at end-diastole (LVIDd), LV ejection fraction (LVEF), isovolumic relaxation time (IVRT), early diastolic peak velocity of mitral valve inflow (E), and early diastolic mitral annular velocity (e'). The E/e' ratio was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and galectin-3 (Gal-3). Myocardial fibrosis was observed through Masson staining of pathological sections, and collagen volume fraction (CVF) and perivascular fibrosis ratio (PFR) were calculated. Real-time polymerase chain reaction (PCR) and Western blot were employed to detect LV myocardial mRNA and protein expression of
α
-SMA, ColⅠ, ColⅢ, MMP-9, and TIMP-1.
Result
2
LC-MS identified 13 active components in LGQH. Molecular docking indicated stable binding of the 13 compounds with five target proteins.
In vivo
experiments showed that compared with the blank group, the HFpEF group had significantly increased LVAWd, LVPWd, LVIDd, IVRT, E/e', ANP, BNP, Gal-3, CVF, and PFR. LV myocardial
α
-SMA, ColⅠ, and ColⅢ mRNA and protein expression was significantly upregulated, while MMP-9/TIMP-1 mRNA and protein ratios were significantly downregulated (
P
<
0.05,
P
<
0.01). Compared with the HFpEF group, LGQH might dose-dependently reduce LVAWd, LVPWd, LVIDd, IVRT, E/e', ANP, BNP, Gal-3, CVF, and PFR, downregulated myocardial α-SMA, ColⅠ, ColⅢ mRNA expression, α-SMA, and ColⅠ protein expression, and upregulated MMP-9/TIMP-1 mRNA and protein expression (
P
<
0.05,
P
<
0.01).
Conclusion
2
LGQH contains multiple active components and may inhibit myocardial fibrosis in HFpEF rats. It may further alleviate LV hypertrophy, dilation, and diastolic dysfunction, making it an effective Chinese medicinal prescription for treating HFpEF.
射血分数保留的心力衰竭苓桂气化方分子对接液相色谱-质谱法心肌纤维化
heart failure with preserved ejection fractionLinggui Qihua prescriptionmolecular dockingliquid chromatography-mass spectrometrymyocardial fibrosis
HEIDENREICH P A,BOZKURT B,AGUILAR D,et al.2022 AHA/ACC/HFSA guideline for the management of heart failure:Executive summary: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines[J].Circulation,2022,145(18):e876-e894.
REDFIELD M M,BORLAUG B A. Heart failure with preserved ejectionfraction:A review[J].JAMA,2023,329(10):827-838.
LÓPEZ B,RAVASSA S,MORENO M U,et al.Diffuse myocardial fibrosis:Mechanisms,diagnosis and therapeutic approaches[J].Nat Rev Cardiol,2021,18(7):479-498.
NAGUEH S F.Heart failure with preserved ejection fraction:Insights into diagnosis and pathophysiology[J].Cardiovasc Res,2021,117(4):999-1014.
张高钰,王子涵,樊佳溶,等.中医药干预射血分数保留的心力衰竭研究进展[J].医学综述,2022,28(13):2679-2683.
董国菊.基于“三焦气化”理论谈中医药分期防治射血分数保留心衰的思路[J].中华中医药学刊,2023,41(4):1-3.
董国菊.基于气化学说谈射血分数保留心力衰竭分期治疗的诊治思路[J].环球中医药,2022,15(5):805-808.
董国菊.基于“通阳不在温而在利小便”从气化不利论射血分数保留的心力衰竭治疗思路[J].中华中医药学刊,2022,40(11):5-7.
熊双,刘剑刚,董国菊,等.苓桂气化方对射血分数保留性心力衰竭模型大鼠心脏功能及糖脂代谢的影响[J].天津中医药,2021,38(7):909-916.
XIONG S,SHI Y,LIU J,et al.Linggui Qihua decoction inhibits atrial fibrosis by regulating TGF-β1/Smad2/3 signal pathway[J].Evid Based Complement Alternat Med,2023,2023:3764316.
唐榕,刘剑刚,熊双,等.射血分数保留的心力衰竭模型建立及心脏结构特征的超声学评价[J].中华超声医学杂志,2021,30(12):1081-1087.
WANG Y,FENG F.Evaluation of the hepatotoxicity of the Zhi-Zi-Hou-Po decoction by combining UPLC-Q-exactive-MS-based metabolomics and HPLC-MS/MS-based geniposide tissue distribution[J].Molecules,2019,24(3):511.
FERRARI R,BÖHM M,CLELAND J G,et al.Heart failure with preserved ejection fraction:Uncertainties and dilemmas[J].Eur J Heart Fail,2015,17(7):665-671.
PACKER M,LAM C,LUND L H,et al.Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction:A hypothesis to explain influence of sex on the evolution and potential treatment of the disease[J].Eur J Heart Fail,2020,22(9):1551-1567.
MOHAMMED S F,HUSSAIN S,MIRZOYEV S A,et al.Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction[J].Circulation,2015,131(6):550-559.
TULETA I,FRANGOGIANNIS N G.Fibrosis of the diabetic heart:Clinical significance, molecular mechanisms, and therapeutic opportunities[J].Adv Drug Deliv Rev,2021,176:113904.
ROMMEL K P,VON ROEDER M,LATUSCYNSKI K,et al.Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction[J].J Am Coll Cardiol,2016,67(15):1815-1825.
KANAGALA P,CHENG A S H,SINGH A,et al.Relationship between focal and diffuse fibrosis assessed by CMR and clinical outcomes in heart failure with preserved ejection fraction[J].JACC Cardiovasc Imaging,2019,12(11):2291-2301.
SHI Y,LIU J,LIU C,et al.Diagnostic and prognostic value of serum soluble suppression of tumorigenicity-2 in heart failure with preserved ejection fraction: A systematic review and meta-analysis[J].Front Cardiovasc Med,2022,9:937291.
郭永胜,张震,渠景连,等.张仲景药用芍药辨析[J].中医药临床杂志,2023,35(6):1070-1073.
徐倩,徐国兵.香豆素类化合物代谢研究进展[J].中国实验方剂学杂志,2015,21(3):222-225.
吴英智,李志樑.白术内酯Ⅰ通过抑制纤维合成保护心肾综合征大鼠心肾功能[D].广州:南方医科大学,2018.
JIN L,SUN S,RYU Y,et al.Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure[J].Sci Rep,2018,8(1):9302.
YAN X,ZHANG Y L,ZHANG L,et al.Gallic acid suppresses cardiac hypertrophic remodeling and heart failure[J].Mol Nutr Food Res,2019,63(5):e1800807.
SHACKEBAEI D,HESARI M,RAMEZANI-ALIAKBARI S,et al.Gallic acid protects against isoproterenol-induced cardiotoxicity in rats[J].Hum Exp Toxicol,2022,41:9603271211064532.
JIN L,LIN M Q,PIAO Z H,et al.Gallic acid attenuates hypertension,cardiac remodeling,and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2[J].J Hypertens,2017,35(7):1502-1512.
LIU X,CHEN K,ZHUANG Y,et al.Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats[J].Biomed Pharmacother,2019,111:695-704.
LIU M,FENG J,DU Q,et al.Paeoniflorin attenuates myocardial fibrosis in isoprenaline-induced chronic heart failure rats via inhibiting p38 MAPK pathway[J].Curr Med Sci,2020,40(2):307-312.
ZHOU H,YANG H X,YUAN Y,et al.Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGF-β/Smads and NF-κB pathways[J].J Mol Histol,2013,44(3):357-367.
徐德宏,谭朝阳,郑慧,等.茯苓功效成分茯苓酸的研究进展[J].食品科学,2022,43(7):273-280.
TALLQUIST M D,MOLKENTIN J D.Redefining the identity of cardiac fibroblasts[J].Nat Rev Cardiol,2017,14(8):484-491.
LIU M,LÓPEZ DE JUAN ABAD B,CHENG K. Cardiac fibrosis:Myofibroblast-mediated pathological regulation and drug delivery strategies[J].Adv Drug Deliv Rev,2021,173:504-519.
李健哲,余术宜.芍药苷对异丙肾上腺素诱导心肌成纤维细胞增殖和胶原产生的影响及其机制研究[J].中国现代医学杂志,2013,23(16):47-52.
罗园园,冯心怡,褚泽文,等.茯苓酸通过Smads调控MMP/TIMP平衡抑制肾癌细胞侵袭转移的机制[J].中国实验方剂学杂志,2023,29(7):76-83.
LING H,ZHANG Y,NG K Y,et al.Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-κB-dependent matrix metalloproteinase-9 expression[J].Breast Cancer Res Treat,2011,126(3):609-620.
LI Q,MING Y,JIA H,et al.Poricoic acid A suppresses TGF-β1-induced renal fibrosis and proliferation via the PDGF-C,Smad3 and MAPK pathways[J].Exp Ther Med,2021,21(4):289.
唐家杨,王青,于雪,等.当药苷调节兴奋-收缩耦联改善心肌缺血再灌注损伤的机制[J].中国实验方剂学杂志,2022,28(15):85-93.
HAN D,ZHANG Q Y,ZHANG Y L,et al.Gallic acid ameliorates angiotensin II-induced atrial fibrillation by inhibiting immunoproteasome-mediated PTEN degradation in mice[J].Front Cell Dev Biol,2020,8:594683.
0
Views
24
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution