浏览全部资源
扫码关注微信
1.黑龙江中医药大学 药学院,哈尔滨 150040
2.黑龙江中医药大学 基础医学院,哈尔滨 150040
Published:05 August 2023,
Published Online:10 April 2023,
Received:13 February 2023,
扫 描 看 全 文
梁霄,李娅兰,张筠昊等.乌药挥发油通过AMPK/mTOR信号通路诱导胃癌AGS细胞凋亡和自噬[J].中国实验方剂学杂志,2023,29(15):42-50.
LIANG Xiao,LI Yalan,ZHANG Junhao,et al.Volatile Oil of Linderae Radix Induces Apoptosis and Autophagy of Gastric Cancer AGS Cells via AMPK/mTOR Signaling Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(15):42-50.
梁霄,李娅兰,张筠昊等.乌药挥发油通过AMPK/mTOR信号通路诱导胃癌AGS细胞凋亡和自噬[J].中国实验方剂学杂志,2023,29(15):42-50. DOI: 10.13422/j.cnki.syfjx.20231121.
LIANG Xiao,LI Yalan,ZHANG Junhao,et al.Volatile Oil of Linderae Radix Induces Apoptosis and Autophagy of Gastric Cancer AGS Cells via AMPK/mTOR Signaling Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(15):42-50. DOI: 10.13422/j.cnki.syfjx.20231121.
目的
2
研究乌药挥发油对人胃癌细胞AGS凋亡和自噬的的影响,并探讨腺苷酸活化蛋白激酶(AMPK)/哺乳动物雷帕霉素靶蛋白(mTOR)信号通路在其中的调控作用。
方法
2
利用水蒸气蒸馏法提取乌药挥发油,采用噻唑蓝(MTT)比色法检测乌药挥发油对人胃癌细胞AGS细胞活力的影响,并根据半抑制浓度(IC
50
)确定最佳给药浓度与时间,用于后续研究;设置空白组、乌药挥发油低、中、高质量浓度组(0、15、30、60 mg·L
-1
)及阳性药环磷酰胺(CTX)组(350 mg·L
-1
)。用不同浓度的乌药挥发油处理AGS细胞48 h,采用细胞集落形成实验检测细胞增殖能力的变化、流式细胞仪检测细胞周期的变化、细胞划痕实验检测细胞迁移能力的变化、苏木素-伊红(HE)染色观察细胞形态的变化、Annexin-V/碘化丙啶(PI)双染法检测AGS细胞凋亡率、吖啶橙(AO)染色观察自噬水平的变化、蛋白免疫印迹法(Western blot)检测自噬效应蛋白Beclin-1、p62、微管相关蛋白1轻链3(LC3)、B细胞淋巴瘤因子-2(Bcl-2)、Bcl-2相关X蛋白(Bax)、剪切的胱天蛋白酶-3(cleaved Caspase-3)、剪切的多聚ADP-核糖聚合酶(cleaved PARP)、单磷酸腺苷活化蛋白激酶(AMPK)、磷酸化AMPK(p-AMPK)、雷帕霉素机械靶蛋白(mTOR)及磷酸化mTOR(p-mTOR)蛋白表达水平的变化。
结果
2
与空白组比较,AGS细胞经乌药挥发油干预24、48 h,细胞活性被明显抑制(
P
<
0.05,
P
<
0.01),呈浓度和时间依赖性;乌药挥发油各浓度组细胞增殖与迁移能力明显降低(
P
<
0.05,
P
<
0.01),且随浓度的上升抑制能力越明显;乌药挥发油将AGS细胞周期阻滞于G
2
/M期(
P
<
0.05,
P
<
0.01),呈浓度依赖性;乌药挥发油各浓度组出现细胞圆化,体积变小并伴随凋亡小体形成等现象,细胞凋亡率明显增加(
P
<
0.05,
P
<
0.01);随着乌药挥发油浓度的增加,自噬体数量增加致红色荧光逐渐增强,提示自噬水平的提升;乌药挥发油各浓度组Beclin-1、LC3 Ⅱ/LC3 Ⅰ、cleaved Caspase-3、cleaved PARP、Bax/Bcl-2及AMPK蛋白表达水平明显升高(
P
<
0.05,
P
<
0.01);p62与p-mTOR蛋白表达水平明显降低(
P
<
0.05,
P
<
0.01)。
结论
2
乌药挥发油通过调节AMPK/mTOR信号通路诱导AGS细胞凋亡和自噬介导的生长抑制。
Objective
2
To investigate the effects of the volatile oil of Linderae Radix on the apoptosis and autophagy of human gastric cancer cell line AGS, and to explore the regulatory role of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in this process.
Method
2
The volatile oil of Linderae Radix was extracted by steam distillation, and the effect of the volatile oil on the viability of AGS cells was detected by thiazolyl tetrazolium (MTT) colorimetry. The optimal intervention dose and time were determined according to the half maximal inhibitory concentration (IC
50
) for subsequent research. The blank, low, medium, and high-dose volatile oil (0, 15, 30, 60 mg·L
-1
) groups and the positive drug cyclophosphamide (CTX, 350 mg·L
-1
) group were designed. AGS cells were treated with different doses of volatile oil for 48 h. The changes in cell proliferation, cycle, and migration were measured by colony formation assay, flow cytometry, and cell scratch test, respectively. Hematoxylin-eosin (HE) staining was employed to observe the changes of cell morphology, Annexin-V/propidium iodide (PI) double staining to measure the apoptosis, and acridine orange (AO) staining to measure the autophagy level of the cells. Western blotting was employed to determine the expression of the autophagy effectors Beclin-1, p62, microtubule-associated protein 1-light chain 3 (LC3), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved Caspase-3, cleaved poly ADP-ribose polymerase (PARP), adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), mTOR, and phosphorylated mTOR (p-mTOR).
Result
2
Compared with the blank group, 24 h and 48 h of intervention with the volatile oil of Linderae Radix inhibited the viability of AGS cells in a concentration- and time-dependent manner (
P
<
0.05,
P
<
0.01). Compared with the blank group, the volatile oil decreased the cell proliferation and migration (
P
<
0.05,
P
<
0.01) and blocked the AGS cell cycle in G
2
/M phase (
P
<
0.05,
P
<
0.01) in a concentration-dependent manner. The cells treated with the volatile oil became spherical and smaller, with the formation of apoptotic bodies and increased apoptosis rate (
P
<
0.05,
P
<
0.01). As the dose of the volatile oil increased, the number of autophagosomes increased and the red fluorescence gradually enhanced, indicating the elevated level of autophagy. Compared with the blank group, different doses of volatile oil up-regulated the protein levels of Beclin-1, LC3 Ⅱ/LC3 Ⅰ, cleaved Caspase-3, cleaved PARP, Bax/Bcl-2, and AMPK (
P
<
0.05,
P
<
0.01) and down-regulated the protein levels of p62 and p-mTOR (
P
<
0.05,
P
<
0.01).
Conclusion
2
The volatile oil of Linderae Radix induces the apoptosis and exerts the autophagy-mediated growth inhibition of AGS cells by regulating the AMPK/mTOR signaling pathway.
乌药挥发油信号通路自噬细胞凋亡
Linderae Radixvolatile oilsignaling pathwaysautophagycell apoptosis
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
YANG L, YING X, LIU S, et al. Gastric cancer: Epidemiology, risk factors and prevention strategies[J]. Chin J Cancer Res, 2020, 32(6): 695-704.
SJÖSTEDT S, PIEPER R. Gastric cancer. Factors influencing longterm survival and postoperative mortality[J]. Acta Chir Scand Suppl, 1986, 530: 25-29.
BOKU N, YAMAMOTO S, FUKUDA H, et al. Fluorouracil versus combination of irinotecan plus cisplatin versus S-1 in metastatic gastric cancer: A randomised phase 3 study[J]. Lancet Oncol, 2009, 10(11): 1063-1069.
LIU D, LU M, LI J, et al. The patterns and timing of recurrence after curative resection for gastric cancer in China[J]. World J Surg Oncol, 2016, 14(1): 305.
FOUAD Y A, AANEI C. Revisiting the hallmarks of cancer[J]. Am J Cancer Res, 2017, 7(5): 1016-1036.
GHOBRIAL I M, WITZIG T E, ADJEI A A. Targeting apoptosis pathways in cancer therapy[J]. CA Cancer J Clin, 2005, 55(3): 178-194.
RAVEGNINI G, SAMMARINI G, NANNINI M, et al. Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis[J]. Autophagy, 2017, 13(3): 452-463.
HUANG J, KLIONSKY D J. Autophagy and human disease[J]. Cell Cycle, 2007, 6(15): 1837-1849.
KONDO Y, KANZAWA T, SAWAYA R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer, 2005, 5(9): 726-734.
晏润纬, 彭小梅. 乌药挥发油的化学成分及药理作用[J]. 时珍国医国药, 2014, 25(11): 2747-2749.
梁霄, 张筠昊, 白皓天, 等. 基于网络药理学及体外实验验证探讨乌药抗胃癌的作用机制[J]. 中国中药杂志, 2022, 47(18): 5008-5021.
YAN R W, YANG Y, ZOU G L. Cytotoxic and apoptotic effects of Lindera strychnifolialeaf essential oil[J]. J Essent Oil Res, 2014, 26(4): 2013.
YAN R, YANG Y, ZENG Y, et al. Cytotoxicity and antibacterial activity of Lindera strychnifolia essential oils and extracts[J]. J Ethnopharmacol, 2009, 121(3): 451-455.
D'ARCY M S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
卓清缘, 陈美先, 王羚郦. 桦木酸通过调节PI3K/Akt/mTOR信号通路诱导人结肠癌细胞SW620凋亡及自噬[J]. 中国实验方剂学杂志, 2022, 28(14): 99-106.
裴彩霞, 汪晓敏, 吴永灿, 等. 桔梗皂苷D通过Bax/Bcl-2/Caspase-3信号通路抑制细胞凋亡保护急性肺损伤的机制研究[J]. 世界科学技术-中医药现代化, 2021, 23(10): 3551-3558.
黄茂杰, 马民, 张桂娟, 等. 乳岩内消霜通过内源性Caspase途径诱导乳腺癌前病变凋亡作用的机制研究[J]. 中药新药与临床药理, 2017, 28(4): 482-488.
CERUTTI C, RIDLEY A J. Endothelial cell-cell adhesion and signaling[J]. Exp Cell Res, 2017, 358(1): 31-38.
GALLUZZI L, GREEN D R. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7): 1682-1699.
SCHLÄFLI A M, ADAMS O, GALVÁN J A, et al. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer[J]. Oncotarget, 2016, 7(26): 39544-39555.
LIN H Y, LIN J N, MA J W, et al. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy[J]. J Funct Foods, 2015, 12: 439-449.
ICHIMURA Y, KOMINAMI E, TANAKA K, et al. Selective turnover of p62/A170/SQSTM1 by autophagy[J]. Autophagy, 2008, 4(8): 1063-1066.
VEGA-RUBÍN-DE-CELIS S, KINCH L, PEÑA-LLOPIS S. Regulation of Beclin 1-mediated autophagy by oncogenic tyrosine kinases[J]. Int J Mol Sci, 2020, 21(23): 9210.
LIU F, TANG L, TAO M, et al. Stichoposide C exerts anticancer effects on ovarian cancer by inducing autophagy via inhibiting Akt/mTOR pathway[J]. Onco Targets Ther, 2022, 15: 87-101.
KOU B, LIU W, XU X, et al. Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells[J]. Oncol Rep, 2017, 38(5): 3137-3143.
JONES R G, PLAS D R, KUBEK S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J]. Mol Cell, 2005, 18(3): 283-293.
IM J, KUNDU M, VIOLLET B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
0
Views
24
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution