

浏览全部资源
扫码关注微信
1.河南中医药大学,郑州 450046
2.河南中医药大学 第一附属医院,郑州 450000
Received:09 January 2023,
Published Online:06 May 2023,
Published:20 March 2024
移动端阅览
吴毅娟,孙兴红,郭海霞等.基于免疫反应-肠道微生物轴探究大肠癌湿热蕴结病机的生物学内涵[J].中国实验方剂学杂志,2024,30(06):228-237.
WU Yijuan,SUN Xinghong,GUO Haixia,et al.Biological Connotation of Pathogenesis of Colorectal Cancer Due to Damp-heat Accumulation Based on Immune Response-intestinal Microbial Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(06):228-237.
吴毅娟,孙兴红,郭海霞等.基于免疫反应-肠道微生物轴探究大肠癌湿热蕴结病机的生物学内涵[J].中国实验方剂学杂志,2024,30(06):228-237. DOI: 10.13422/j.cnki.syfjx.20231130.
WU Yijuan,SUN Xinghong,GUO Haixia,et al.Biological Connotation of Pathogenesis of Colorectal Cancer Due to Damp-heat Accumulation Based on Immune Response-intestinal Microbial Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(06):228-237. DOI: 10.13422/j.cnki.syfjx.20231130.
大肠癌(CRC)是以排便习惯改变,便血、及疼痛为主要临床表现的肠道恶性肿瘤。近年来随着生活方式及饮食结构的改变,发病率逐年上升。CRC的发病机制与异常免疫反应及慢性炎症、肠道微生物失调及致癌代谢产物产生等密切相关。肠道微生物群和机体免疫之间是一种双向沟通,不仅在维持机体健康方面起着关键作用,而且还与疾病的发生发展有密切关系。越来越多的研究表明,异常的免疫反应通过产生炎症因子、引起机体慢性炎症,破坏肠黏膜屏障及增加黏膜通透性,造成肠道微生物生态失调,大量致病性微生物及其代谢产物加速疾病进程;另一方面,肠道微生物失调,通过抑制正常的免疫反应,导致体内多种代谢途径紊乱,影响肠道内外应激反应,诱导炎症发生,从而产生疾病。故免疫反应-肠道微生物轴之间复杂的串扰机制与大肠癌的发生关系密切。基于中医理论及临床研究发现,饮食因素是CRC发病的重要诱因,正气不足是其致病之本,湿热蕴结是关键病机。通过现代医学与生物学研究,认为异常的免疫反应是湿热内蕴的微观表现,而肠道微生物失调是毒注大肠生物学基础,并且在CRC的发病中,免疫反应-肠道微生物轴失衡与中医湿热蕴结相契合。从免疫反应-肠道微生物轴探讨CRC湿热蕴结的生物学内涵,力争用客观数据诠释CRC湿热蕴结的病机内涵,对于CRC湿热蕴结证的发病机制及诊疗策略提供新的思路及理论依据。
Colorectal cancer (CRC) is a malignant tumor of the intestinal tract with changes in bowel habits, blood in the stool, and pain as the main clinical manifestations. With the change in lifestyle and diet structure in recent years, the incidence of CRC has been increasing year by year. The pathogenesis of CRC is closely related to abnormal immune response and chronic inflammation, intestinal microbial dysbiosis, and the production of oncogenic metabolites. There is a two-way communication between the intestinal microbiota and the body's immunity, which not only plays a key role in maintaining the body's health but also has a close relationship with the development of diseases. An increasing number of studies have shown that abnormal immune responses accelerate the disease process by producing inflammatory factors, causing chronic inflammation in the body, disrupting the intestinal mucosal barrier, and increasing mucosal permeability, thus resulting in dysbiosis of the intestinal microbial ecology and a large number of pathogenic microorganisms and their metabolites. In addition, dysbiosis of intestinal microbes, by suppressing the normal immune response, leads to the disruption of multiple metabolic pathways in the body, affecting the internal and external stress response of the intestine, inducing inflammation, and thus producing disease. Therefore, the complex crosstalk mechanism between the immune response and intestinal microbial axis is closely related to the development of CRC. Based on traditional Chinese medicine theory and clinical research, it was found that dietary factors are an important causative factor in the development of CRC. The deficiency of positive energy is the root cause of the disease, and damp-heat accumulation is the key pathogenesis. Through modern medical and biological research, it is believed that abnormal immune response is the microscopic manifestation of damp-heat entrapment, while intestinal microbial dysbiosis is the biological basis of toxic injection into the large intestine, and in the pathogenesis of CRC, the imbalance of immune response-intestinal microbial axis is compatible with damp-heat accumulation in traditional Chinese medicine. This study aims to explore the biological connotation of CRC due to damp-heat accumulation from the immune response-intestinal microbial axis, so as to interpret the pathogenesis of CRC due to damp-heat accumulation with objective data and provide new ideas and theoretical basis for the pathogenesis and treatment strategies of CRC due to damp-heat accumulation.
SIEGEL R L , MILLER K D , JEMAL A . Cancer statistics, 2020 [J]. CA Cancer J Clin , 2020 , 70 ( 1 ): 7 - 30 .
CHEN M , LI C , LUO Q , et al . LncRNA LINC02257: A potential biomarker for diagnosis and prognosis of colorectal cancer [J]. J Oncol , 2022 , doi: 10.1155/2022/4330630 http://dx.doi.org/10.1155/2022/4330630 .
HIBBERD A A , LYRA A , OUWEHAND A C , et al . Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention [J]. BMJ Open Gastroenterol , 2017 , 4 ( 1 ): e000145 .
ARTEMEV A , NAIK S , POUGNO A , et al . The association of microbiome dysbiosis with colorectal cancer [J]. Cureus , 2022 , 14 ( 2 ): e22156 .
KESHAVARZ SHAHBAZ S , KOUSHKI K , AYATI SH , et al . Inflammasomes and colorectal cancer [J]. Cells , 2021 , 10 ( 9 ): 2172 .
ASADZADEH AGHDAEI H , REZASOLTANI S , OLFATIFAR M , et al . Expression of Toll-like receptors 2, 4 and 5 in relation to gut microbiota in colon neoplasm patients with and without inflammatory bowel disease [J]. Avicenna J Med Biotechnol , 2022 , 14 ( 3 ): 188 - 195 .
LUCAS C , BARNICH N , NGUYEN H T T . Microbiota, inflammation and colorectal cancer [J]. Int J Mol Sci , 2017 , 18 ( 6 ): 1310 .
ALSINA M , MOEHLER M , HIERRO C , et al . Immunotherapy for gastric cancer: A focus on immune checkpoints [J]. Target Oncol , 2016 , 11 ( 4 ): 469 - 477 .
SWANN J B , SMYTH M J . Immune surveillance of tumors [J]. J Clin Invest , 2007 , 117 ( 5 ): 1137 - 1146 .
REFOLO M G , LOTESORIERE C , MESSA C , et al . Integrated immune gene expression signature and molecular classification in gastric cancer: New insights [J]. J Leukoc Biol , 2020 , 108 ( 2 ): 633 - 646 .
YAO H , WANG S , ZHOU X , et al . Sting promotes proliferation and induces drug resistance in colorectal cancer by regulating the AMPK-mTOR pathway [J]. J Gastrointest Oncol , 2022 , 13 ( 5 ): 2458 - 2471 .
DANG J , HE Z , CUI X , et al . The role of IL-37 and IL-38 in colorectal cancer [J]. Front Med (Lausanne) , 2022 , doi: 10.3389/fmed.2022.811025 http://dx.doi.org/10.3389/fmed.2022.811025 .
XING C , DU Y , DUAN T , et al . Interaction between microbiota and immunity and its implication in colorectal cancer [J]. Front Immunol , 2022 , doi: 10.3389/fimmu.2022.963819 http://dx.doi.org/10.3389/fimmu.2022.963819 .
TERZIĆ J , GRIVENNIKOV S , KARIN E , et al . Inflammation and colon cancer [J]. Gastroenterology , 2010 , 138 ( 6 ): 2101 - 2114 .
FRANCESCONE R , HOU V , GRIVENNIKOV S I . Cytokines, IBD, and colitis-associated cancer [J]. Inflamm Bowel Dis , 2015 , 21 ( 2 ): 409 - 418 .
REN J , ZHANG P , LI Z , et al . Association of non-steroidal anti-inflammatory drugs, genetic risk, and environmental risk factors with incidence of colorectal cancer [J]. Cancers (Basel) , 2022 , 14 ( 20 ): 5138 .
REZASOLTANI S , SHARAFKHAH M , ASADZADEH AGHDAEI H , et al . Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer [J]. J Microbiol Methods , 2018 , 155 : 82 - 88 .
MENG W , LI Z , ZHANG Y , et al . Zhenqi Fuzheng formula inhibits the growth of colorectal tumors by modulating intestinal microflora-mediated immune function [J]. Aging (Albany NY) , 2022 , 14 ( 11 ): 4769 - 4785 .
GAGNIÈRE J , RAISCH J , VEZIANT J , et al . Gut microbiota imbalance and colorectal cancer [J]. World J Gastroenterol , 2016 , 22 ( 2 ): 501 - 518 .
IYADORAI T , MARIAPPAN V , VELLASAMY K M , et al . Prevalence and association of pks + Escherichia coli with colorectal cancer in patients at the University malaya medical centre, malaysia [J]. PLoS One , 2020 , 15 ( 1 ): e0228217 .
ARTHUR J C , PEREZ-CHANONA E , MÜHLBAUER M , et al . Intestinal inflammation targets cancer-inducing activity of the microbiota [J]. Science , 2012 , 338 ( 6103 ): 120 - 123 .
GETHINGS-BEHNCKE C , COLEMAN H G , JORDA H W T , et al . Fusobacterium nucleatum in the colorectum and its association with cancer risk and survival: A systematic review and Meta-analysis [J]. Cancer Epidemiol Biomarkers Prev , 2020 , 29 ( 3 ): 539 - 548 .
HASHEMI GORADEL N , HEIDARZADEH S , JAHANGIRI S , et al . Fusobacterium nucleatum and colorectal cancer: A mechanistic overview [J]. J Cell Physiol , 2019 , 234 ( 3 ): 2337 - 2344 .
DEJEA C M , FATHI P , CRAIG J M , et al . Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria [J]. Science , 2018 , 359 ( 6375 ): 592 - 597 .
CHUNG L , THIELE ORBERG E , GEIS A L , et al . Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells [J]. Cell Host Microbe , 2018 , 23 ( 2 ): 203 - 214 .
LONG X , WONG C C , TONG L , et al . Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity [J]. Nat Microbiol , 2019 , 4 ( 12 ): 2319 - 2330 .
WEST N R , MCCUAIG S , FRANCHINI F , et al . Emerging cytokine networks in colorectal cancer [J]. Nat Rev Immunol , 2015 , 15 ( 10 ): 615 - 629 .
ALAM A , LEONI G , QUIROS M , et al . The microenvironment of injured murine Gut elicits a local pro-restitutive microbiota [J]. Nat Microbiol , 2016 , 1 : 15021 .
WANG L , TANG L , FENG Y , et al . A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8 + T cells in mice [J]. Gut , 2020 , 69 ( 11 ): 1988 - 1997 .
CHEN D , JIN D , HUANG S , et al . Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and Gut microbiota [J]. Cancer Lett , 2020 , 469 : 456 - 467 .
LIU M , XIE W , WAN X , et al . Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice [J]. Int Immunopharmacol , 2020 , doi: 10.1016/j.intimp.2020.106862 http://dx.doi.org/10.1016/j.intimp.2020.106862 .
XING J , LIAO Y , ZHANG H , et al . Impacts of microRNAs induced by the Gut microbiome on regulating the development of colorectal cancer [J]. Front Cell Infect Microbiol , 2022 , 12 : 804689 .
NICHOLSON J K , HOLMES E , KINROSS J , et al . Host-gut microbiota metabolic interactions [J]. Science , 2012 , 336 ( 6086 ): 1262 - 1267 .
ADEME M . Benefits of fecal microbiota transplantation: A comprehensive review [J]. J Infect Dev Ctries , 2020 , 14 ( 10 ): 1074 - 1080 .
LIN Y , KONG D X , ZHANG Y N . Does the microbiota composition influence the efficacy of colorectal cancer immunotherapy? [J]. Front Oncol , 2022 , 12 : 852194 . doi: 10.3389/fonc.2022.852194 http://dx.doi.org/10.3389/fonc.2022.852194 .
LEISTER H , KRAUSE F F , MAHDAVI R , et al . The role of immunoproteasomes in tumor-immune cell interactions in melanoma and colon cancer [J]. Arch Immunol Ther Exp (Warsz) , 2022 , 70 ( 1 ): 5 .
GUR C , IBRAHIM Y , ISAACSON B , et al . Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack [J]. Immunity , 2015 , 42 ( 2 ): 344 - 355 .
RUBINSTEIN M R , WANG X , LIU W , et al . Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/ β -catenin signaling via its FadA adhesin [J]. Cell Host Microbe , 2013 , 14 ( 2 ): 195 - 206 .
SCHMITT M , GRETEN F R . The inflammatory pathogenesis of colorectal cancer [J]. Nat Rev Immunol , 2021 , 21 ( 10 ): 653 - 667 .
KIM J , LEE H K . Potential role of the gut microbiome in colorectal cancer progression [J]. Front Immunol , 2022 , doi: 10.3389/fimmu.2021.807648 http://dx.doi.org/10.3389/fimmu.2021.807648 .
GUARDAMAGNA M , BERCIANO-GUERRERO M A , VILLAESCUSA-GONZÁLEZ B , et al . Gut microbiota and therapy in metastatic melanoma: Focus on MAPK pathway inhibition [J]. Int J Mol Sci , 2022 , 23 ( 19 ): 11990 .
TAIEB F , PETIT C , NOUGAYRÈDE J P , et al . The enterobacterial genotoxins: Cytolethal distending toxin and colibactin [J]. Eco Sal Plus , 2016 , 7 ( 1 ): 10 .1128.
RAISCH J , ROLHION N , DUBOIS A , et al . Intracellular colon cancer-associated escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression [J]. Lab Invest , 2015 , 95 ( 3 ): 296 - 307 .
DEROSA L , ROUTY B , DESILETS A , et al . Microbiota-centered interventions: The next breakthrough in immuno-oncology? [J]. Cancer Discov , 2021 , 11 ( 10 ): 2396 - 2412 .
王蕾 , 谢智惠 , 吴平 . 结肠癌患者中医证型分布与营养标志物的关系 [J]. 临床与病理杂志 , 2022 , 42 ( 8 ): 1829 - 1835 .
ALRAHAWY M , JAVED S , ATIF H , et al . Microbiome and colorectal cancer management [J]. Cureus , 2022 , 14 ( 10 ): e30720 .
KRUGER C , ZHOU Y . Red meat and colon cancer: A review of mechanistic evidence for heme in the context of risk assessment methodology [J]. Food Chem Toxicol , 2018 , 118 : 131 - 153 .
SMITH K S , RANEY S V , GREENE M W , et al . Development and validation of the dietary habits and colon cancer beliefs survey (DHCCBS): An instrument assessing health beliefs related to red meat and green leafy vegetable consumption [J]. J Oncol , 2019 , doi: 10.1155/2019/2326808 http://dx.doi.org/10.1155/2019/2326808 .
BRADBURY K E , MURPHY N , KEY T J . Diet and colorectal cancer in UK Biobank: A prospective study [J]. Int J Epidemiol , 2020 , 49 ( 1 ): 246 - 258 .
NOGACKA A M , GÓMEZ-MARTÍN M , SUÁREZ A , et al . Xenobiotics formed during food processing: Their relation with the intestinal microbiota and colorectal cancer [J]. Int J Mol Sci , 2019 , 20 ( 8 ): 2051 .
DAHMUS J D , KOTLER D L , KASTENBERG D M , et al . The gut microbiome and colorectal cancer: A review of bacterial pathogenesis [J]. J Gastrointest Oncol , 2018 , 9 ( 4 ): 769 - 777 .
OMAR Al-HASSI H , NG O , BEOOKES M . Tumour-associated and non-tumour-associated microbiota in colorectal cancer [J]. Gut , 2018 , 67 ( 2 ): 395 .
ZHOU E , RIFKIN S . Colorectal cancer and diet: Risk versus prevention, is diet an intervention? [J]. Gastroenterol Clin North Am , 2021 , 50 ( 1 ): 101 - 111 .
王婷 , 郑锋玲 , 骆欢欢 . 岭南温病湿热证小鼠模型的建立及肠道菌群的研究分析 [J]. 中华中医药学刊 , 2017 , 35 ( 6 ): 1361 - 1365 .
甘斌 , 李华南 , 李松 , 等 . 基于脂代谢和炎症反应探讨两种湿热证痛风性关节炎大鼠模型的构建 [J]. 中国比较医学杂志 , 2023 , 33 ( 1 ): 26 - 33 .
张天涵 , 沈洪 . 溃疡性结肠炎及其中医辨证分型与炎症活动性指标的相关性分析 [J]. 北京中医药大学学报 , 2019 , 42 ( 8 ): 685 - 690 .
李妮矫 , 王君 , 姚树坤 . 湿热证与肝脏炎症指标的相关性研究 [J]. 中国中医基础医学杂志 , 2011 , 17 ( 3 ): 294 - 295 .
崔璀 , 张振巍 . 加味三仁汤对脾胃湿热证大鼠氧化应激、能量代谢及免疫平衡的影响 [J]. 中成药 , 2022 , 44 ( 11 ): 3677 - 3680 .
朱晓燕 , 曲小青 , 王丽佳 . 健脾化湿汤治疗溃疡性结肠炎脾虚湿热证的疗效观察 [J]. 深圳中西医结合杂志 , 2022 , 32 ( 14 ): 43 - 45 .
苏家辉 , 谭嘉斌 , 陶银 , 等 . 蒿芩清胆汤治疗急性梗阻性化脓性胆管炎(肝胆湿热证)的疗效分析 [J]. 中国中医急症 , 2022 , 31 ( 5 ): 872 - 875 .
YANG T , RICHARDS E M , PEPINE C J , et al . The gut microbiota and the brain-Gut-kidney axis in hypertension and chronic kidney disease [J]. Nat Rev Nephrol , 2018 , 14 ( 7 ): 442 - 456 .
ZHANG H , HUANG Y , LI X , et al . Dynamic process of secondary pulmonary infection in mice with intracerebral hemorrhage [J]. Front Immunol , 2021 , doi: 10.3389/fimmu.2021.767155 http://dx.doi.org/10.3389/fimmu.2021.767155 .
HENRY N , FRANK J , MCLOUTH C , et al . Short chain fatty acids taken at time of thrombectomy in acute ischemic stroke patients are independent of stroke severity but associated with inflammatory markers and worse symptoms at discharge [J]. Front Immunol , 2022 , doi: 10.3389/fimmu.2021.797302 http://dx.doi.org/10.3389/fimmu.2021.797302 .
莫晓玮 , 唐凯锐 , 王静 . 黄芩汤对溃疡性结肠炎湿热证小鼠肠道菌群的影响 [J]. 湖南中医药大学学报 , 2022 , 42 ( 6 ): 917 - 922 .
丁庞华 , 李军祥 , 郭一 , 等 . 基于高通量测序技术的溃疡性结肠炎大肠湿热证患者肠道菌群多样性的研究 [J]. 世界科学技术—中医药现代化 , 2018 , 20 ( 6 ): 967 - 973 .
周晔禄 , 赵玲 , 贾茹 , 等 . 湿热证大肠癌患者肠道菌群对AOM/DSS小鼠肠癌发生的影响 [J]. 中华中医药杂志 , 2022 , 37 ( 5 ): 2842 - 2846 .
鲍炳州 , 朱超 , 吴生兵 , 等 . 基于16S rDNA测序技术探索白头翁汤灌肠对湿热型溃疡性结肠炎大鼠肠道菌群的影响 [J]. 安徽中医药大学学报 , 2019 , 38 ( 6 ): 62 - 68 .
高翔 , 李萍 , 田敬华 , 等 . 清肠化湿汤对肠道细菌增殖影响的体外研究 [J]. 中华中医药杂志 , 2019 , 34 ( 3 ): 974 - 977 .
苗斌 , 王海芹 , 郑树清 . 肠宁汤对急性溃疡性结肠炎(湿热证)大鼠免疫功能、细胞炎症因子及肠道菌群的影响 [J]. 中国中医急症 , 2019 , 28 ( 10 ): 1747 - 1750 .
YUAN Z , YANG L , ZHANG X , et al . Therapeutic effect of N -butanol fraction of Huang-lian-Jie-du decoction on ulcerative colitis and its regulation on intestinal flora in colitis mice [J]. Biomed Pharmacother , 2020 , 121 : 109638 .
GAO R , GAO Z , HUANG L , et al . Gut microbiota and colorectal cancer [J]. Eur J Clin Microbiol Infect Dis , 2017 , 36 ( 5 ): 757 - 769 .
GALEMA H A , MEIJER R , LAUWERENDS L J , et al . Fluorescence-guided surgery in colorectal cancer; A review on clinical results and future perspectives [J]. Eur J Surg Oncol , 2022 , 48 ( 4 ): 810 - 821 .
LU X , ZHENG Y , WEN F , et al . Effectiveness and safety of oral chinese patent medicines combined with chemotherapy for gastric cancer: A bayesian network meta-analysis [J]. Evid Based Complement Alternat Med , 2020 , doi: 10.1155/2020/8016531 http://dx.doi.org/10.1155/2020/8016531 .
SI H , YANG Q , HU H , et al . Colorectal cancer occurrence and treatment based on changes in intestinal flora [J]. Semin Cancer Biol , 2021 , 70 : 3 - 10 .
WEI W , ZHOU Y , CHEN F , et al . Isolation, diversity, and antimicrobial and immunomodulatory activities of endophytic actinobacteria from tea cultivars Zijuan and Yunkang-10 (camellia sinensis var. assamica) [J]. Front Microbiol , 2018 , doi: 10.3389/fmicb.2018.01304 http://dx.doi.org/10.3389/fmicb.2018.01304 .
MONTALBAN-ARQUES A , SCHARL M . Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy [J]. E Bio Medicine , 2019 , 48 : 648 - 655 .
VEZIANT J , VILLÉGER R , BARNICH N , et al . Gut microbiota as potential biomarker and/or therapeutic target to improve the management of cancer: Focus on colibactin-producing escherichia coli in colorectal cancer [J]. Cancers (Basel) , 2021 , 13 ( 9 ): 2215 .
STRAKOVA N , KORENA K , KARPISKOVA R . Klebsiella pneumoniae producing bacterial toxin colibactin as a risk of colorectal cancer development - A systematic review [J]. Toxicon , 2021 , 197 : 126 - 135 .
白姣姣 , 阿丽亚·依拉木 , 阿布都艾则孜·艾尔肯 , 等 . 中药复方及单体治疗结肠癌药效与机制研究进展 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 4 ): 246 - 252 .
0
Views
126
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621