浏览全部资源
扫码关注微信
北京中医药大学 生命科学学院,北京 102488
Received:03 September 2024,
Accepted:24 October 2024,
Published Online:24 October 2024,
Published:20 July 2025
移动端阅览
孙晶,亓云鹏,李思远等.大黄炒炭前后游离蒽醌与没食子酸在溃疡性结肠炎小鼠体内药代动力学及组织分布比较[J].中国实验方剂学杂志,2025,31(14):198-205.
SUN Jing,QI Yunpeng,LI Siyuan,et al.Comparison of Pharmacokinetics and Tissue Distribution of Free Anthraquinones and Gallic Acid in Mice with Ulcerative Colitis Before and After Processing of Rhei Radix et Rhizoma Carbonisata[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(14):198-205.
孙晶,亓云鹏,李思远等.大黄炒炭前后游离蒽醌与没食子酸在溃疡性结肠炎小鼠体内药代动力学及组织分布比较[J].中国实验方剂学杂志,2025,31(14):198-205. DOI: 10.13422/j.cnki.syfjx.20250861.
SUN Jing,QI Yunpeng,LI Siyuan,et al.Comparison of Pharmacokinetics and Tissue Distribution of Free Anthraquinones and Gallic Acid in Mice with Ulcerative Colitis Before and After Processing of Rhei Radix et Rhizoma Carbonisata[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(14):198-205. DOI: 10.13422/j.cnki.syfjx.20250861.
目的
2
研究生大黄与大黄炭中游离蒽醌与没食子酸在溃疡性结肠炎(UC)小鼠体内的药代动力学及组织分布的情况,从体内过程角度探索大黄炒炭前后治疗UC的药效差异机制。
方法
2
126只雄性C57BL/6JNifdc小鼠,随机分为21组,其中1组为空白组,1
0组为生大黄组,10组为大黄炭组,每组6只。除空白组外,其他组使用3.5%葡聚糖硫酸钠(DSS)自由饮用诱导UC小鼠模型,按6.5 g·kg
-1
(以生药量计算)灌胃生大黄或大黄炭水提浸膏后收集不同时间点的血浆及肝、小肠、结肠样品,采用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法(UPLC-Q-Exactive Orbitrap MS)检测小鼠血浆和组织中大黄酸、大黄素、芦荟大黄素、大黄素甲醚、大黄酚、没食子酸在不同时间点的浓度,通过DAS 2.0软件应用非房室模型计算各成分的药代动力学参数,采用IBM SPSS Statistics 20对实验数据进行统计学分析。
结果
2
药代动力学结果表明,与生大黄比较,大黄炭中6种成分的达峰时间(
t
max
)均缩短,其中大黄酚和没食子酸的差异有统计学意义(
P
<
0.05,
P
<
0.01);5种游离蒽醌的药-时曲线下面积(AUC)、达峰浓度(
C
max
)及半衰期(
t
1/2
z
)增加。组织分布结果表明,生大黄及大黄炭中没食子酸及游离蒽醌的分布模式存在明显差异,生大黄在4~6 h组织药物浓度达最大值,大黄炭则在0.25~1 h组织药物含量相对较高。
结论
2
炒炭炮制明显改变了大黄中5种游离蒽醌与没食子酸的药代动力学及组织分布行为,增加了活性成分的体内暴露,加快了吸收速度,这可能是大黄炭治疗UC的作用优于生大黄的原因之一。
Objective
2
To investigate the pharmacokinetics and tissue distribution of free anthraquinones and gallic acid from Rhei Radix et Rhizoma Carbonisata(RRRC) and its raw products in mice with ulcerative colitis(UC), and to explore the mechanism of the pharmacodynamic difference in the treatment of UC before and after processing of RRRC from the perspective of
in vivo
process.
Methods
2
A total of 126 male C57BL/6JNifdc mice were randomly divided into 21 groups, of which 1 group was the blank group, 10 groups were RRR group, and 10 groups were RRRC group, with 6 mice per group. Except for the blank group, other groups were given 3.5% dextran sulfate sodium(DSS) in drinking water to induce a mouse model of UC. After intragastric administration of RRR or RRRC water extracts at a crude drug dose of 6.5 g·kg
-1
, plasma and liver, small intestine, and colon samples were collected at different time points, and the concentrations of rhein, emodin, aloe-emodin, physcion, chrysophanol and gallic acid in plasma and tissues of mice were determined by ultra-performance liquid chromatogra
phy-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS). Pharmacokinetic parameters of the components were calculated using the non-compartmental model with DAS 2.0 software, and the data were statistically analyzed by IBM SPSS Statistics 20.
Results
2
Pharmacokinetic results indicated that compared with RRR, the time to peak concentration(
t
max
) of the six components in RRRC was significantly shortened, with statistically significant differences specifically observed for chrysophanol and gallic acid (
P
<
0.05,
P
<
0.01), and the area under the concentration-time curve(AUC), the peak concentration(
C
max
) and elimination half-life(
t
1/2z
) of five free anthraquinones exhibited increases. Tissue distribution results showed that there were significant differences in the distribution patterns of gallic acid and free anthraquinones between RRR and RRRC, the RRR group reached the maximum drug concentration in tissues at 4-6 h, while the RRRC group had relatively higher tissue drug content at 0.25-1 h.
Conclusion
2
The carbonization significantly alters the pharmacokinetic and tissue distribution behaviors of five free anthraquinones and gallic acid in RRR, increases the
in vivo
exposure of the active components, and accelerates the absorption rate, which may be one of the reasons why RRRC is superior to the raw products in the treatment of UC.
国家药典委员会 . 中华人民共和国药典:一部 [M]. 北京 : 中国医药科技出版社 , 2020 : 24 .
Chinese Pharmacopoeia Commission . Pharmacopoeia of the People's Republic of China:Volume 1 [M]. Beijing : China Medical Science and Technology Press , 2020 : 24 .
DAI L , CAO X , MIAO X , et al . The chemical composition,protective effect of Rheum officinale leaf juice and its mechanism against dextran sulfate sodium-induced ulcerative colitis [J]. Phytomedicine , 2024 , 129 : 155653 .
张丹参 , 梅艳飞 , 宋晓敏 , 等 . 大鼠溃疡性结肠炎模型的构建及大黄结肠靶向微丸的干预作用 [J]. 神经药理学报 , 2016 , 6 ( 2 ): 14 - 19 .
ZHANG D S , MEI Y F , SONG X M , et al . Establishment of model of ulcerative colitis in rats and interventional effect of Rhubarb colon-specific pellets [J]. Acad Neurol Pharmacol , 2016 , 6 ( 2 ): 14 - 19 .
张一凡 . 大黄炭治疗溃疡性结肠炎的药效及机制初探 [D]. 北京 : 北京中医药大学 , 2023 .
ZHANG Y F . A Preliminary study on the efficacy and mechanism of Rhei Radix et Rhizome carbonisata in the treatment of ulcerative colitis [D]. Beijing : Beijing University of Chinese Medicine , 2023 .
ZHAI L , YANG W , LI D , et al . Network pharmacology and molecular docking reveal the immunomodulatory mechanism of rhubarb peony decoction for the treatment of ulcerative colitis and irritable bowel syndrome [J]. J Pharm Pharm Sci , 2023 , 26 : 11225 .
华明柳 , 沈杰 , 赵园园 . 大黄附子汤合桃花汤加味对溃疡性结肠炎患者肠道菌群及肠屏障功能的影响 [J]. 中医药学报 , 2023 , 51 ( 6 ): 84 - 88 .
HUA M L , SHEN J , ZHAO Y Y . Effects of Dahuang Fuzi decoction combined with modified Taohua decoction on intestinal microflora and intestinal barrier function in patients with ulcerative colitis [J]. J Chin Med Pharmacol , 2023 , 51 ( 6 ): 84 - 88 .
LUO S , WEN R , WANG Q , et al . Rhubarb Peony decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance [J]. J Ethnopharmacol , 2019 , 231 : 39 - 49 .
FENG Y , WU C , CHEN H , et al . Rhubarb polysaccharide and berberine co-assembled nanoparticles ameliorate ulcerative colitis by regulating the intestinal flora [J]. Front Pharmacol , 2023 , 14 : 1184183 .
中华中医药学会脾胃病分会 . 溃疡性结肠炎中医诊疗专家共识意见(2017) [J]. 中华中医药杂志 , 2017 , 32 ( 8 ): 3585 - 3589 .
Chinese Association of Chinese Medicine Spleen and Stomach Disease Branch . Expert consensus on traditional Chinese medicine diagnosis and treatment of ulcerative colitis(2017) [J]. China J Tradit Chin Med Pharm , 2017 , 32 ( 8 ): 3585 - 3589 .
中国中西医结合学会消化系统疾病专业委员会 . 溃疡性结肠炎中西医结合诊疗共识意见(2017年) [J]. 中国中西医结合消化杂志 , 2018 , 26 ( 2 ): 105 - 111,120 .
Digestive System Disease Committee of Chinese Association of Integrative Medicine . Consensus on traditional Chinese and Western medicine integrated diagnosis and treatment of ulcerative colitis(2017) [J]. Chin J Integr Tradit West Med Dig , 2018 , 26 ( 2 ): 105 - 111,120 .
孙晶 , 徐文娟 , 钟琳瑛 , 等 . UPLC-QE-Orbitrap-MS结合网络药理学探索大黄炒炭前后治疗溃疡性结肠炎的差异成分及其作用机制 [J]. 中国中药杂志 , 2024 , 49 ( 7 ): 1834 - 1847 .
SUN J , XU W J , ZHONG L Y , et al . UPLC-QE-Orbitrap-MS combined with network pharmacology to explore differential components and mechanisms of raw and scorched rhubarb for treatment of ulcerative colitis [J]. China J Chin Mater Med , 2024 , 49 ( 7 ): 1834 - 1847 .
SUN J , ZHONG L , DONG L , et al . Mid-infrared spectroscopic identification of the right-baked rhubarb for ulcerative colitis therapy [J]. Spectrochim Acta A Mol Biomol Spectrosc , 2024 , 314 : 124244 .
LI Y , YE Z , HE H , et al . The application of Tong-fu therapeutic method on ulcerative colitis:A systematic review and Meta-analysis for efficacy and safety of rhubarb-based therapy [J]. Front Pharmacol , 2022 , 13 : 1036593 .
罗爽 , 罗霞 , 刘琦 , 等 . 大黄酸对DSS诱导溃疡性结肠炎小鼠的治疗作用及机制探讨 [J]. 中国实验方剂学杂志 , 2017 , 23 ( 11 ): 109 - 113 .
LUO S , LUO X , LIU Q , et al . Effect and mechanism of rhein on DSS-induced ulcerative colitis in mice [J]. Chin J Exp Tradit Med Form , 2017 , 23 ( 11 ): 109 - 113 .
高飞 , 钟辉云 , 陈可禧 , 等 . 大黄有效组分“大黄酸-大黄素”联合治疗溃疡性结肠炎作用机制研究 [J]. 中国中药杂志 , 2022 , 47 ( 15 ): 4148 - 4155 .
GAO F , ZHONG H F , CHEN K X , et al . Mechanism of combined treatment of rhein and emodin in Rhubarb for ulcerative colitis [J]. China J Chin Mater Med , 2022 , 47 ( 15 ): 4148 - 4155 .
廖伊琦 , 康玥 , 余祥彬 , 等 . 蒽醌类化合物用于溃疡性结肠炎治疗的研究进展 [J]. 福建医科大学学报 , 2023 , 57 ( 5 ): 311 - 315 .
LIAO Y Q , KANG Y , YU X B , et al . Research progress on therapy of anthraquinones for ulcerative colitis [J]. J Fujian Med Univ , 2023 , 57 ( 5 ): 311 - 315 .
ZHONG L , SUN J , LI S , et al . Scorch processing of rhubarb ( Rheum tanguticum Maxim. ex Balf.) pyrolyzed anthraquinone glucosides into aglycones and improved the therapeutic effects on thromboinflammation via regulating the complement and coagulation cascades pathway [J]. J Ethnopharmacol , 2024 , 333 : 118475 .
杨丽 . 大黄炭“形性-化学-生物”三性指标关联机制与炮制传递规律研究 [D]. 北京 : 北京中医药大学 , 2021 .
YANG L . Research on the correlation mechanism of the "form and property-chemical-biological" three -gender index of Rhubarb charcoal and the processing and transfer laws [D]. Beijing : Beijing University of Chinese Medicine , 2021 .
YANG L , YANG L , PEI W , et al . Color-reflected chemical regulations of the scorched rhubarb (Rhei Radix et Rhizoma) revealed by the integration analysis of visible spectrophotometry,fourier transform infrared spectroscopy and high performance liquid chromatography [J]. Food Chem , 2022 , 367 : 130730 .
YANG L , YANG L , SUN S , et al . Cascading chemical transitions of rhubarb (Rhei Radix et Rhizoma) during the scorching process revealed by heated ATR-FTIR spectroscopy and two-dimensional correlation analysis [J]. J Mol Struct , 2020 , 1216 : 128307 .
SHI Y , ZHONG G , HUANG H , et al . Comparative pharmacokinetics of five primary constituents in Huai-hua powder:A study on normal rats and rats with ulcerative colitis [J]. J Pharm Pharmacol , 2024 , 76 ( 9 ): 1160 - 1168 .
NAKAI D , MIYAKE M . Intestinal membrane function in inflammatory bowel disease [J]. Pharmaceutics , 2023 , 16 ( 1 ): 29 .
XU Y , WANG Q , YIN Z , et al . On-line incubation and real-time detection by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapidly analyzing metabolites of anthraquinones in rat liver microsomes [J]. J Chromatogr A , 2018 , 1571 : 94 - 106 .
屈义虎 . 药用大黄成分分析及结合型蒽醌生物转化研究 [D]. 汉中 : 陕西理工大学 , 2019 .
QU Y H . The component analysis of Rheum officinale Baill and the biotransformation of the conjugated anthraquinone [D]. Hanzhong : Shaanxi University of Technology , 2019 .
HUANG Z , XU Y , WANG Q , et al . Metabolism and mutual biotransformations of anthraquinones and anthrones in rhubarb by human intestinal flora using UPLC-Q-TOF/MS [J]. J Chromatogr B Analyt Technol Biomed Life Sci , 2019 , 1104 : 59 - 66 .
WU W J , YAN R , LI T , et al . Pharmacokinetic alterations of rhubarb anthraquinones in experimental colitis induced by dextran sulfate sodium in the rat [J]. J Ethnopharmacol , 2017 , 198 : 600 - 607 .
YANG L , WAN Y , LI W , et al . Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb [J]. Appl Microbiol Biotechnol , 2022 , 106 ( 4 ): 1615 - 1631 .
ZHOU P , ZHANG J , XU Y , et al . Simultaneous quantification of anthraquinone glycosides,aglycones,and glucuronic acid metabolites in rat plasma and tissues after oral administration of raw and steamed rhubarb in blood stasis rats by UHPLC-MS/MS [J]. J Sep Sci , 2022 , 45 ( 2 ): 529 - 541 .
冯潜 . 大黄素和大黄酸在肠道的吸收与代谢机理研究 [D]. 广州 : 南方医科大学 , 2016 .
FENG Q . The absorption and metabolism of emodin and rhein in the intestinal [D]. Guangzhou : Southern Medical University , 2016 .
ZHANG J , ZHOU P , XU Y , et al . Metabolic profile and dynamic characteristic of rhubarb during the vitro biotransformation by human gut microbiota [J]. Food Chem , 2022 , 397 : 133840 .
ZHAO D , FENG S X , ZHANG H J , et al . Pharmacokinetics,tissue distribution and excretion of five rhubarb anthraquinones in rats after oral administration of effective fraction of anthraquinones from Rheum officinale [J]. Xenobiotica , 2021 , 51 ( 8 ): 916 - 925 .
0
Views
10
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution