浏览全部资源
扫码关注微信
1.湖北中医药大学,武汉 430000
2.中国人民解放军 中部战区总医院,武汉 430000
黄萍,在读硕士,从事方剂配伍及临床应用规律的研究,E-mail:huangping95@stmail.hbtcm.edu.cn
汪琼,博士,副教授,硕士生导师,从事临床中药学教学与研究,E-mail:wq_ccp@hbtcm.edu.cn
纸质出版日期:2022-09-20,
网络出版日期:2022-05-30,
收稿日期:2022-03-07,
扫 描 看 全 文
黄萍,周祯祥,李德顺等.基于代谢组学和网络药理学探讨细辛-干姜药对对COPD大鼠肺、肝脂质代谢的影响[J].中国实验方剂学杂志,2022,28(18):152-160.
HUANG Ping,ZHOU Zhenxiang,LI Deshun,et al.Effect of Asari Radix et Rhizoma-Zingiberis Rhizoma Herb Pair on Lung and Liver Lipid Metabolism in Rats with COPD Based on Metabolomics and Network Pharmacology[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(18):152-160.
黄萍,周祯祥,李德顺等.基于代谢组学和网络药理学探讨细辛-干姜药对对COPD大鼠肺、肝脂质代谢的影响[J].中国实验方剂学杂志,2022,28(18):152-160. DOI: 10.13422/j.cnki.syfjx.20220913.
HUANG Ping,ZHOU Zhenxiang,LI Deshun,et al.Effect of Asari Radix et Rhizoma-Zingiberis Rhizoma Herb Pair on Lung and Liver Lipid Metabolism in Rats with COPD Based on Metabolomics and Network Pharmacology[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(18):152-160. DOI: 10.13422/j.cnki.syfjx.20220913.
目的
2
探讨细辛-干姜药对(XGHP)对慢性阻塞性肺疾病(COPD)大鼠肺、肝脏脂质代谢的影响。
方法
2
40只SD雄性大鼠,分为正常组(10只)和模型组(30只),采用香烟烟雾+气管注射脂多糖(LPS)+冷刺激复制COPD寒饮伏肺证模型,造模成功后分COPD组、XGHP组(5.4 g·kg
-1
·d
-1
),氨茶碱组(0.5 g·kg
-1
·d
-1
),各10只,治疗结束后,检测各组大鼠血清中甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)水平。采用气相色谱-质谱联用技术(GC-MS)检测各组大鼠肺、肝组织的差异代谢物,网络药理学预测差异代谢物的靶点,取两脏交集靶点,作基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。分子对接计算XGHP中的主要成分与网络药理学中相关靶点的结合能力。运用实时荧光定量聚合酶链式反应(Real-time PCR)和蛋白免疫印迹法(Western blot)检测肺、肝组织过氧化物酶体增殖物激活受体
α
(PPAR
α
)、脂肪酸结合蛋白4(FABP4)mRNA和蛋白表达水平。
结果
2
XGHP明显升高COPD大鼠血清中的TG、TC、LDL-C的水平(
P
<
0.05),明显降低HDL-C的水平(
P
<
0.05)。GC-MS分析,COPD组和XGHP组中肺脏差异代谢物有8个,肝脏差异代谢物17个。网络药理学预测两脏差异代谢物的共同靶点59个,主要富集在PPAR信号通路。分子对接结果显示,XGHP中的主要成分与PPAR
α
、FABP4均结合良好。Real-time PCR和Western blot结果显示XGHP能有效上调COPD大鼠肺、肝组织PPAR
α
、FABP4 mRNA和蛋白表达水平(
P
<
0.05)。
结论
2
XGHP能改善COPD大鼠血脂水平,可能与增加PPAR信号通路上PPAR
α
、FABP4 mRNA和蛋白的表达水平相关,从而调节肺脏和肝脏脂质代谢。
Objective
2
To investigate the effects of Asari Radix et Rhizoma-Zingiberis Rhizoma herb pair (XGHP) on lung and liver lipid metabolism in rats with chronic obstructive pulmonary disease (COPD).
Method
2
Forty SD male rats were divided into a normal group (10 rats) and a model group (30 rats). The method of cigarette smoke + tracheal injection of lipopolysaccharide(LPS) + cold stimulation was used to replicate COPD model with the syndrome of cold phlegm obstruction in lung. A COPD group, a XGHP group (5.4 g·kg
-1
·d
-1
), and an aminophylline group (0.5 g·kg
-1
·d
-1
) were established after successfully inducing the model, with 10 rats in each group. After treatment, the serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels of rats in each group were measured. Gas chromatography-mass spectrometer (GC-MS) was used to detect the differential metabolites in the lung and liver tissues of rats in each group, and the relevant targets of the differential metabolites were predicted by network pharmacology. Molecular docking was used to verify the binding ability of key components in XGHP to the relevant targets in network pharmacology. The mRNA and protein expression levels of peroxisome proliferator-activated receptor
α
(PPAR
α
) and fatty acid binding protein 4 (FABP4) in lung and liver tissues of rats in each group were detected by real-time polymerase chain reaction (PCR) and Western blot.
Result
2
XGHP significantly increased the levels of TG, TC, and LDL-C in serum (
P
<
0.05), and decreased the level of HDL-C (
P
<
0.05) in rats with COPD. GC-MS results showed that there were 8 lung differential metabolites and 17 liver differential metabolites in the COPD group and XGHP group. Network pharmacology predicted 59 common targets for the two differential metabolites, mainly enriched in the PPAR signaling pathway. Molecular docking results showed that the main components in XGHP were well combined with both PPAR
α
and FABP4. Real-time PCR showed that XGHP effectively up-regulated the expression levels of PPAR
α
and FABP4 mRNA (
P
<
0.05), and Western blot showed that XGHP effectively up-regulated the expression levels of PPAR
α
and FABP4 proteins (
P
<
0.05) in lung and liver tissues of rats with COPD.
Conclusion
2
XGHP effectively improves the blood lipid levels of rats with COPD, which may be related to the increase of the expression levels of PPAR
α
and FABP4 mRNA and proteins in the PPAR signaling pathway, thus regulating lung and liver lipid metabolism.
细辛-干姜药对慢性阻塞性肺疾病(COPD)脂质代谢过氧化物酶体增殖物激活受体(PPAR)信号通路代谢组学
Asari Radix et Rhizoma-Zingiberis Rhizoma herb pairchronic obstructive pulmonary disease (COPD)lipid metabolismperoxisome proliferator-activated receptor (PPAR) signaling pathwaymetabolomics
KIM Y W,LEE C H,HWANG H G,et al.Resting hyperinflation and emphysema on the clinical course of COPD[J].Sci Rep,2019,9(1):3764.
李耀宁,陶立新,张子曰,等.慢性阻塞性肺病与气象因素相关性分析[J].气象与环境学报,2010,26(6):13-17.
王宝娟,崔利锋,李冬霞,等.苓甘五味姜辛汤对脂多糖诱导的急性肺损伤大鼠免疫细胞和炎性细胞因子的影响[J].中国中医急症,2019,28(2):220-224.
张月.小青龙汤加味对慢性阻塞性肺疾病急性发作期患者肺部功能及实验室指标的影响[J].现代中西医结合杂志,2020,29(12):1323-1326.
刘海燕,陈福忠.细辛、干姜配伍对COPD寒饮蕴肺证大鼠模型的相关性研究[J].中国中医基础医学杂志,2012,18(4):380-382.
HUANG P,HUANG T,LI D,et al.Molecular mechanism of Xixin-Ganjiang herb pair treating chronic obstructive pulmonary disease-integrated network pharmacology and molecular docking[J].Evid Based Complement Alternat Med,2021,2021:5532009.
庄星星,倪受东,陈明,等.“细辛-干姜”药对配伍前后指纹图谱变化及其多指标成分的定量分析[J].中医药临床杂志,2021,33(5):927-932.
WANG G,GAO J H,HE L H,et al.Fargesin alleviates atherosclerosis by promoting reverse cholesterol transport and reducing inflammatory response[J].Biochim Biophys Acta Mol Cell Biol Lipids,2020,1865(5):158633.
孙璐瑶.慢性阻塞性肺疾病脂质代谢异常的临床探讨[D].长春:吉林大学,2013.
CHEN H,LI Z,DONG L,et al.Lipid metabolism in chronic obstructive pulmonary disease[J].Int J Chron Obstruct Pulmon Dis,2019,14:1009-1018.
南京中医学院(南京中医学大学).伤寒论[M].上海:上海科学技术出版社,2018.
韩涛.方剂学[M].济南:山东科学技术出版社,2020.
刘海燕,陈福忠.细辛、干姜配伍对COPD寒饮蕴肺证大鼠模型的相关性研究[J].中国中医基础医学杂志,2012,18(4):380-382.
赵伟,孙国志.不同种实验动物间用药量换算[J].畜牧兽医科技信息,2010(5):52-53.
钟相根,李宇航,贾旭,等.“通利大肠”对慢性阻塞性肺疾病大鼠气道黏液高分泌的影响[J].北京中医药大学学报,2010,33(12):809-812.
曹洒.基于代谢组学和转录组学的细辛散剂肝毒性机制研究[D].武汉:湖北中医药大学,2020.
CAO S,HAN L,LI Y,et al.Integrative transcriptomics and metabolomics analyses provide hepatotoxicity mechanisms of asarum[J].Exp Ther Med,2020,20(2):1359-1370.
XIA J,WISHART D S.Metabolomic data processing, analysis, and interpretation using MetaboAnalyst[J].Curr Protoc Bioinformatics,2011,14:10.
JIN M,REN W,ZHANG W,et al.Exploring the underlying mechanism of Shenyankangfu tablet in the treatment of glomerulonephritis through network pharmacology, machine learning, molecular docking, and experimental validation[J].Drug Des Devel Ther,2021,15:4585-4601.
GAI X,GUO C,ZHANG L,et al.Serum glycerophospholipid profile in acute exacerbation of chronic obstructive pulmonary disease[J].Front Physiol,2021,12:646010.
VERMEEREN M A,CREUTZBERG E C,SCHOLS A M,et al.Prevalence of nutritional depletion in a large out-patient population of patients with COPD[J].Respir Med,2006,100(8):1349-1355.
RAWAL G,YADAV S.Nutrition in chronic obstructive pulmonary disease:A review[J].J Transl Int Med,2015,3(4):151-154.
董玲玲.气道上皮细胞脂肪酸合成代谢调控慢阻肺气道炎症和肺气肿的研究[D].杭州:浙江大学,2020.
RAN S,SUN F,SONG Y,et al.The study of dried ginger and Linggan Wuwei Jiangxin decoction treatment of cold asthma rats using GC-MS based metabolomics[J].Front Pharmacol,2019,10:284.
LIPUT K P,LEPCZYŃSKI A,OGłUSZKA M,et al.Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis[J].Int J Mol Sci,2021,22(13):1-25.
AGARWAL A R,YIN F,CADENAS E.Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells[J].Am J Respir Cell Mol Biol,2014,51(2):284-293.
吕田田,余亚辉,余海艳,等.慢性阻塞性肺病稳定期模型大鼠支气管肺泡灌洗液的代谢组学研究[J].中国医院药学杂志,2021,41(19):1955-1961.
晏海飞,陈玲,曾晋俊,等.加味定喘汤联合西医常规治疗对慢性阻塞性肺疾病急性加重期痰热困阻型患者的疗效和脂质代谢的影响[J].中药材,2020,43(8):2012-2016.
刘志刚,李泽庚,徐彬,等.基于HPLC-MS/MS技术的COPD稳定期氨基酸代谢研究[J].临床肺科杂志,2013,18(10):1751-1752.
张淼,潘万旗,许前磊,等.基于PPAR信号通路的HIV/AIDS肺脾气虚证脂代谢的调节机制研究[J].中华中医药学刊,2021,39(9):52-54.
肖波,王建春.过氧化物增殖体激活受体与肺部疾病[J].医学研究生学报,2009,22(1):79-82.
REMELS A H,GOSKER H R,SCHRAUWEN P,et al.Peroxisome proliferator-activated receptors: A therapeutic target in COPD?[J].Eur Respir J,2008,31(3):502-508.
王丽丽,李素云,李亚.慢性阻塞性肺疾病骨骼肌能量代谢研究现状[J].中医临床研究,2015,7(28):143-145.
ZHANG J Q,LONG X Y,XIE Y,et al.Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD[J].Bioengineered,2017,8(6):723-731.
唐银平,何燕.过氧化物酶体增殖物激活受体在COPD患者中的作用[J].医学综述,2019,25(21):4245-4250.
王金慧,同军.脂肪型脂肪酸结合蛋白的研究进展[J].中华灾害救援医学,2016,4(7):409-413.
PEREA L,RODRIGO-TROYANO A,CANTÓ E,et al.Reduced airway levels of fatty-acid binding protein 4 in COPD:Relationship with airway infection and disease severity[J].Respir Res,2020,21(1):21.
张震,富文俊,邢宇锋,等.L-FABP/PPARα信号通路与非酒精性脂肪性肝炎关系的研究进展[J].山东医药,2016,56(8):98-100.
WOLFRUM C,BORRMANN C M,BORCHERS T,et al.Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha-and gamma-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus[J].Proc Natl Acad Sci USA,2001,98(5):2323-2328.
0
浏览量
13
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构