浏览全部资源
扫码关注微信
天津中医药大学 中药学院,天津 301617
[第一作者] 于俏,在读硕士,从事中药配位化学及中药活性成分方面研究,E-mail:yvqiao326@163.com
*寇晓娣,博士,教授,从事中药配位化学及中药活性成分方面研究,E-mail: xiaodikou2013@163.com
*杨爱红,博士,副教授,从事中药配位化学及中药活性成分方面研究,E-mail: yah408@163.com;
纸质出版日期:2020-05-05,
网络出版日期:2019-11-19,
收稿日期:2019-08-18,
扫 描 看 全 文
于俏, 陈雨虹, 琚辉, 等. 细辛挥发油成分与CYP1A2酶的分子对接分析[J]. 中国实验方剂学杂志, 2020,26(9):202-207.
Qiao YU, Yu-hong CHEN, Hui JU, et al. Molecular Docking of Volatile Oily Constituents of Chinese Herbal Medicine Asari Radix et Rhizoma and CYP1A2 Enzyme[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020,26(9):202-207.
于俏, 陈雨虹, 琚辉, 等. 细辛挥发油成分与CYP1A2酶的分子对接分析[J]. 中国实验方剂学杂志, 2020,26(9):202-207. DOI: 10.13422/j.cnki.syfjx.20200506.
Qiao YU, Yu-hong CHEN, Hui JU, et al. Molecular Docking of Volatile Oily Constituents of Chinese Herbal Medicine Asari Radix et Rhizoma and CYP1A2 Enzyme[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020,26(9):202-207. DOI: 10.13422/j.cnki.syfjx.20200506.
目的:
2
研究细辛中黄樟醚、肉豆蔻醚、甲基丁香酚、细辛脑四种挥发油成分以及黄樟醚活性中间体和肉豆蔻醚活性中间体同CYP1A2酶的作用方式。
方法:
2
通过“Cocktail”探针底物法筛选细辛挥发油成分对CYP1A2,CYP2D6,CYP2E1,CYP3A4和CYP2C19 5种人肝微粒体酶的抑制作用。采用半柔性分子对接的方式研究挥发油成分及中间体与CYP1A2酶的结合能力。
结果:
2
结果表明挥发油成分对CYP1A2具有较强的抑制作用。分子对接评分结果分别为3.048 7 kcal·mol
-1
(黄樟醚),6.016 4 kcal·mol
-1
(肉豆蔻醚),16.969 2 kcal·mol
-1
(甲基丁香酚),16.013 8 kcal·mol
-1
(细辛脑),23.923 3 kcal·mol
-1
(黄樟醚活性中间体)和25.594 3 kcal·mol
-1
(肉豆蔻醚活性中间体)。
结论:
2
分子对接结果表明黄樟醚中间体和肉豆蔻醚中间体与CYP1A2酶的结合能力最强。进一步确定了黄樟醚和肉豆蔻醚是CYP1A2酶的基于机制性抑制剂,与本课题组前期的IC
50
-shift及谷胱甘肽捕获实验的结果一致。
Objective:
2
To study the mechanisms of action of four volatile oil components (safrole
myristicin
methyleugenol and asarone) and the reactive metabolites of safrole and myristicin with CYP1A2.
Method:
2
The inhibitory effects of the volatile oil components of Asari Radix et Rhizoma on the human liver microsomal enzymes CYP1A2
CYP2D6
CYP2E1
CYP3A4 and CYP2C19 were screened by the " Cocktail" probe substrate method. The ability of the volatile oil components and intermediates in binding to CYP1A2 enzyme was studied by means of semi-flexible molecular docking.
Result:
2
The screening results showed that the components had a strong inhibitory effect on CYP1A2.Molecular docking scores were 3.048 7 kcal·mol
-1
(safrole)
6.016 4 kcal·mol
-1
(myristicin)
16.969 2 kcal·mol
-1
(methyleugenol)
16.013 8 kcal·mol
-1
(asarone)
23.923 3 kcal·mol
-1
(safrole reactive metabolites) and 25.594 3 kcal·mol
-1
(myristicin reactive metabolites).
Conclusion:
2
Molecular docking results indicate that safrole metabolic intermediate and myristicin metabolic intermediate have the strongest ability in binding to CYP1A2 enzyme. This study further confirms that safrole and myristicin are the mechanism-based inhibitors of CYP1A2 enzyme
which is consistent with the results of previous IC
50
-shift and glutathione capture experiments.
分子对接黄樟醚肉豆蔻醚活性中间体CYP1A2
molecular dockingsafrolemyristicinreactive metabolitesCYP1A2
丁香,赵万秋,蔡林.中药细辛的现代临床应用研究[J].临床合理用药杂志,2015, 8(30): 177-179.
李明,周强,杨丽娜,等.基于历代中医文献的细辛证治规律与常用剂量探索[J].中国实验方剂学杂志,2018, 24(8): 23-28.
M JOHANNA, B OLUSHEYI, G C KITE, et al. Medicinally used asarum species: high-resolution LC-MS analysis of aristolochic acid analogs and in vitro toxicity screening in HK-2 cells[J].Front Pharmacol, 2017, 8(215): 1-9.
高皓,贾党生,郝俊霞,等.基于网络分析细辛毒理学[J].中国实验方剂学杂志,2019, 25(10): 180-187.
陈成伟. 药物性肝损伤的研究进展及我国存在的问题[J].临床肝胆病杂志,2018, 34(6): 10-14.
K T SUK, D J KIM. Drug-induced liver injury: present and future[J].Clin Mol Hepatol, 2012, 18(3): 249-257.
E S BJORNSSON, O M BERGMANN, H K BJORNSSON, et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of iceland[J].Gastroenterology, 2013, 144(7): 1419-1425.
C ZHANG, F CHENG, W LI, et al. In silico prediction of drug induced liver toxicity using substructure pattern recognition method[J].Mol Inform, 2016, 35(3/4): 136-144.
J HADEM, F TACKE, T BRUNS, et al. Etiologies and outcomes of acute liver failure in Germany[J].Clin Gastroenterol H, 2012, 10(6): 664-669.
H K HO, J C Y CHAN, K D HARDY, et al. Mechanism-based inactivation of CYP450 enzymes: a case study of lapatinib[J].Drug Metab Rev, 2015, 47(1): 21-28.
N TAKAHASHI, SUBEHAN, S KADOTA. Mechanism-based CYP2D6 inactivation by acridone alkaloids of Indonesian medicinal plant Lunasia amara[J].Fitoterapia, 2012, 83(4): 774-779.
郝俊霞,高梓森,高皓,等.基于网络药理学的雷公藤肾毒性机制探讨[J].中国实验方剂学杂志,2019, 25(16): 142-151.
S Y HUANG, Y Q ZOU. Advances and challenges in protein-ligand docking[J].Int J Mol Sci, 2010, 11(8): 3016-3034.
汪祺,王亚丹,杨建波,等.基于分子对接及体外抑制实验预测芹菜素潜在药物相互作用[J].中国中药杂志,2019,44(18):4043-4047.
雒银珍,赵博文,陈茜,等.基于分子模拟技术的豨莶通栓制剂调脂作用机制及剂型选择研究[J].中国中药杂志,2019,44(7):1436-1441.
E FONTANA, P M DANSETTE, S M POLI. Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity[J].Curr Drug Metab, 2005, 6(5): 413-454.
A H YANG, X HE, J X CHEN, et al. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2[J].Chem Biol Interact, 2015, 237: 133-140.
A H YANG, L ZHANG, D X ZHI, et al. Identification and analysis of the reactive metabolites related to the hepatotoxicity of safrole[J].Xenobiotica, 2018, 48(11): 1164-1172.
李曼华,孙昊鹏,尤启冬. CYP1A2抑制剂预测模型的建立及评价[J].中国药科大学学报,2013, 44(5): 401-409.
0
浏览量
12
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构