浏览全部资源
扫码关注微信
1.安徽中医药大学,合肥 230012
2.安徽省中医药科学院 中西医结合研究所,合肥 230012
3.中药复方安徽省重点实验室,合肥 230012
丁芮,在读博士,从事中药复方抗肿瘤作用研究,E-mail:584831330@qq.com
黄金玲,教授,博士生导师,从事中药抗肿瘤作用及其分子机制研究,E-mail:jinling6181@126.com
纸质出版日期:2022-06-20,
网络出版日期:2022-01-29,
收稿日期:2021-12-08,
扫 描 看 全 文
丁芮,周鹏,王翔等.基于Wnt5a/Ca2+/NFAT信号通路研究小陷胸汤调控Ca2+载量抑制MGC-803细胞侵袭迁移和上皮间质转化作用[J].中国实验方剂学杂志,2022,28(12):1-11.
DING Rui,ZHOU Peng,WANG Xiang,et al.Xiao Xianxiongtang Regulates Ca2+ Load and Inhibits Epithelial-mesenchymal Transition, Invasion, and Migration of MGC-803 Cells: Based on Wnt5a/ Ca2+/NFAT Signaling Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(12):1-11.
丁芮,周鹏,王翔等.基于Wnt5a/Ca2+/NFAT信号通路研究小陷胸汤调控Ca2+载量抑制MGC-803细胞侵袭迁移和上皮间质转化作用[J].中国实验方剂学杂志,2022,28(12):1-11. DOI: 10.13422/j.cnki.syfjx.20220727.
DING Rui,ZHOU Peng,WANG Xiang,et al.Xiao Xianxiongtang Regulates Ca2+ Load and Inhibits Epithelial-mesenchymal Transition, Invasion, and Migration of MGC-803 Cells: Based on Wnt5a/ Ca2+/NFAT Signaling Pathway[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(12):1-11. DOI: 10.13422/j.cnki.syfjx.20220727.
目的
2
探讨小陷胸汤对转化生长因子-
β
1
(TGF-
β
1
)诱导胃癌MGC-803细胞侵袭转移及上皮间质转化的影响,并探讨其可能的机制。
方法
2
通过CB-DOCK在线平台(
http: //clab
http://clab
. labshare. cn /cb-dock /)预测小陷胸汤与活化T细胞核转录因子(NFAT)分子对接。使用质量浓度为10 μg·L
-1
的TGF-
β
1
建立人胃癌MGC-803细胞侵袭转移模型,将MGC-803细胞分为空白组、模型组、小陷胸汤组(0.1、0.2、0.4 g·L
-1
),为进一步探讨Wnt5a/Ca
2+
/NFAT信号通路在小陷胸汤抑制胃癌中的关键参与作用,将Wnt5a过表达质粒转染MGC-803细胞,分为空白质粒组、Wnt5a-OE组、空白质粒+小陷胸汤(0.4 g·L
-1
)组和Wnt5a-OE+小陷胸汤(0.4 g·L
-1
)组。分别使用细胞增殖与活性检测(CCK-8)法、Transwell小室实验、划痕愈合实验、蛋白免疫印迹法(Western blot)、免疫荧光法检测MGC-803细胞活力、侵袭能力、迁移能力、E-钙黏蛋白(E-cadherin)、N-钙黏蛋白(N-cadherin)、波形蛋白(Vimentin)、锌指蛋白(Snail)、Wnt5a/Ca
2+
/NFAT信号通路关键蛋白Wnt5a、钙调神经磷酸酶(CaN)、NFAT1、磷酸化(p)-NFAT1和NFAT1核蛋白表达以及细胞Ca
2+
浓度变化。
结果
2
分子对接提示小陷胸汤作用于Wnt5a/Ca
2+
/NFAT信号通路。与模型组比较,小陷胸汤(0.1、0.2、0.4 g·L
-1
)能明显促进MGC-803细胞活力的丧失,可通过基质凝胶侵入Transwell下室抑制细胞,并以剂量依赖性的方式减缓细胞划痕愈合,并促进E-cadherin的表达,抑制N-cadherin、Vimentin和Snail的表达(
P
<
0.05,
P
<
0.01)。进一步实验表明,与模型组比较,小陷胸汤可以抑制Wnt5a、CaN、NFAT1和p-NFAT1的表达,降低NFAT1核表达和NFAT1介导的转录活性,从而降低细胞Ca
2+
浓度,且可逆转Wnt5a的作用(
P
<
0.05,
P
<
0.01)。
结论
2
小陷胸汤可通过Wnt5a/Ca
2+
/NFAT通路减弱人胃癌MGC-803细胞的侵袭转移和上皮间质转化(EMT),从而减弱TGF-
β
1
诱导的促瘤作用。这提示小陷胸汤可能通过调节胃癌的侵袭、转移和EMT来预防和治疗胃癌。
Objective
2
To explore the effect of Xiao Xianxiongtang (XXXT) on the transforming growth factor (TGF)-
β
1
-induced invasion, metastasis, and epithelial-mesenchymal transition (EMT) of gastric cancer MGC-803 cells and the underlying mechanism.
Method
2
The molecular docking between XXXT
and nuclear factor of activated T cells (NFAT) was performed by CB-DOCK (
http://clab.labshare.cn/cb-dock/
http://clab.labshare.cn/cb-dock/
). The invasion and metastasis model of MGC-803 cells was established with 10 μg·L
-1
TGF-
β
1
. MGC-803 cells were classified into blank group, model group, 0.1 g·L
-1
XXXT group, 0.2 g·L
-1
XXXT group, and 0.4 g·L
-1
XXXT group. For further clarifying the key role of Wnt5a/Ca
2+
/NFAT signaling pathway in the inhibition of XXXT on gastric cancer, MGC-803 cells were transfected with Wnt5a overexpression plasmid, and then the cells were classified into blank plasmid group, Wnt5a-OE group, blank plasmid + XXXT (0.4 g·L
-1
) group, and Wnt5a-OE + XXXT (0.4 g·L
-1
) group. Cell viability was determined by cell counting kit-8 (CCK-8) assay, cell invasion and migration ability by Transwell invasion assay and wound healing assay, expression of EMT-related proteins (E-cadherin, N-cadherin, Vimentin, Snail) and Wnt5a/Ca
2+
/NFAT signaling pathway-related key proteins [Wnt5a, calcineurin (CaN), NFAT1, and p-NFAT1] by Western blot, and changes in intracellular Ca
2+
concentration by immunofluorescence assay.
Result
2
Molecular docking suggested that XXXT acted on Wnt5a/Ca
2+
/NFAT signaling pathway. XXXT (0.1, 0.2, 0.4 g·L
-1
) significantly promoted the loss of MGC-803 cell viability (
P
<
0.05,
P
<
0.01). It inhibited cells from invading the transwell lower chamber and slowed down the healing of cell wounds in a dose-dependent manner (
P
<
0.05,
P
<
0.01). Moreover, it promoted the expression of E-cadherin while suppressed the expression of N-cadherin, Vimentin, and Snail (
P
<
0.05,
P
<
0.01). Further experiments showed that XXXT could inhibit the expression of Wnt5a, CaN, NFAT1, and p-NFAT1, and reduce the nuclear expression of NFAT1 and the transcription activity mediated by NFAT1, so as to reduce the cellular Ca
2+
concentration (
P
<
0.05,
P
<
0.01). XXXT can reverse the effect of Wnt5a (
P
<
0.05,
P
<
0.01).
Conclusion
2
XXXT can attenuate the invasion, metastasis, and EMT of MGC-803 cells via the Wnt5a/Ca
2+
/NFAT pathway, thereby weakening the tumor-promoting effect of TGF-
β
1
. In summary, XXXT may exert therapeutic effect on gastric cancer by regulating the invasion, metastasis, and EMT of gastric cancer cells.
小陷胸汤胃癌侵袭转移上皮间质转化Wnt5a/Ca2+/活化T细胞核因子(NFAT)信号通路
Xiao Xianxiongtanggastric cancerinvasion and metastasisepithelial-mesenchymal transitionWnt5a/Ca2+/ nuclear factor of activated T cells (NFAT) signaling pathway
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. Cancer, 2018, 68(6): 394-424.
WANG L, WEN X, LUAN F, et al. EIF3B is associated with poor outcomes in gastric cancer patients and promotes cancer progression via the PI3K/Akt/mTOR signaling pathway [J]. Cancer Manag Res, 2019,11(1):7877-7891.
ZHANG X, XUE J, YANG H, et al. TNFAIP6 promotes invasion and metastasis of gastric cancer and indicates poor prognosis of patients [J]. Tissue cell, 2021, doi: 10.1016/j.tice.2020.101455http://dx.doi.org/10.1016/j.tice.2020.101455.
JI Q, LI Y, ZHAO Q, et al. KLF11 promotes gastric cancer invasion and migration by increasing Twist1 expression [J]. Neoplasma, 2019, 66(1): 92-100.
LI S, CONG X, GAO H, et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells [J]. J Exp Clin Cancer Res, 2019,doi:10.1186/s13046-018-1003-0http://dx.doi.org/10.1186/s13046-018-1003-0.
JORDAN N V, PRAT A, ABELL A N, et al. SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling [J]. Mol Cell Biol, 2013,33(15):3011-3025.
CHENG R, SUN B, LIU Z, et al. Wnt5a suppresses colon cancer by inhibiting cell proliferation and epithelial-mesenchymal transition [J].J Cell Physiol, 2014, 229 (12):1908-1917.
GE Q, HU Y, HE J, et al. Zic1 suppresses gastric cancer metastasis by regulating Wnt/β-catenin signaling and epithelial-mesenchymal transition [J]. FASEB J, 2020,34(2):2161-2172.
CAI M, SIKONG Y, WANG Q, et al. Gpx3 prevents migration and invasion in gastric cancer by targeting NF-κB/Wnt5a/JNK signaling [J]. Int J Clin Exp Pathol, 2019,12(4):1194-1203.
周蕾,刘嘉湘.刘嘉湘运用小陷胸汤治疗肿瘤相关症状举隅[J].辽宁中医杂志,2016,43(3):617-619.
周佳静,贾英杰.贾英杰教授运用小陷胸汤合苇茎汤治疗肺癌并发恶性胸腔积液经验举隅[J].西部中医药,2012,25(4):31-33.
郭麒,喻嵘,肖碧跃,等.国医大师熊继柏运用小陷胸汤合方治疗恶性肿瘤经验[J].湖南中医药大学学报,2020,40(3):271-273.
骆学新,洪国标,童海江.加味小陷胸汤联合顺铂胸腔内化疗治疗恶性胸腔积液的疗效及对相关因子的影响[J].浙江中医杂志,2019,54(4):242-243.
王彬彬,沈敏鹤,吴良村.吴良村应用小陷胸汤治疗胰腺癌经验[J].中医杂志,2018,59(2):108-110.
姚鹏宇,刘芳,吕翠霞.陶汉华教授基于“气血水并调”理论运用小陷胸合四君子汤加减治疗肺癌经验[J].西部中医药,2021,34(1):37-40.
ZHEN J, CHEN W, LIU Y, et al. Baicalin protects against acute pancreatitis involving JNK signaling pathway via regulating miR-15a [J]. Am J Chin Med, 2021,49(1):147-161.
SONG L, ZHU S, LIU C, et al. Baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway [J]. J Food Biochem, 2021,2021:e13703.
LIU Y, HUA W, LI Y, et al. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis [J]. Biochem Pharmacol, 2020, doi: 10.1016/j.bcp. 2019. 113776http://dx.doi.org/10.1016/j.bcp.2019.113776.
丁芮,葛瑞瑞,王恩宇,等.加味小陷胸汤水提物通过Wnt5a/Ca2+/NFAT信号通路抑制TGF-β1介导的人胃癌MGC-803细胞上皮-间质转化及侵袭迁移[J].中国实验方剂学杂志,2021,27(4):37-46.
WU Y, BORDE M, HEISSMEYER V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT [J]. Cell, 2006, 126(2): 375-387.
LIU Y, GRIMM M, DAI W T, et al. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking [J]. Acta Pharmacol Sin, 2020, 41(1): 138-144.
LIN M H, GUO X H, QIAO L X, et al. Effect of overexpression of apoptosis-stimulating protein 2 of p53 on activation and apoptosis of hepatic stellate cells induced by transforming growth factor-β1 and its mechanism [J]. Chin J Hepatol, 2019, 27(11): 890-895.
BRYUKHOVETSKIY I, SHEVCHENKO V, ARNOTSKAYA N, et al. Transforming growth factor-β mimics the key proteome properties of CD133-differentiated and CD133+ cancer stem cells in glioblastoma [J]. Int Rev Neurobiol, 2020,151(2):219-242.
PENG S, SONG C, LI H, et al. Circular RNA SNX29 sponges miR-744 to regulate proliferation and differentiation of myoblasts by activating the Wnt5a/Ca2+ signaling pathway [J]. Mol Ther Nucleic Acids, 2019, 16(2):481-493.
MEHRALIKHANI A, MOVAHEDI M, LARYPOOR M, et al. Evaluation of the effect of on the expression of E-cadherin, dysadherin and Ki-67 in BALB/C mice with 4T1 model of breast cancer [J]. Nutr Cancer, 2021, 73(2): 318-328.
SATELLI A, LI S. Vimentin in cancer and its potential as a molecular target for cancer therapy [J]. Cell Mol Life Sci, 2011, 68(18): 3033-3046.
ASTUDILLO P. Wnt5a signaling in gastric cancer [J]. Front Cell Dev Biol, 2020,8(3):110.
ASEM M, YOUNG A M, OYAMA C, et al. Host Wnt5a potentiates microenvironmental regulation of ovarian cancer metastasis [J]. Cancer Res, 2020, 80(5): 1156-1170.
LUO J, LIU L, SHEN J, et al. miR‑576‑5p promotes epithelial‑to‑mesenchymal transition in colorectal cancer by targeting the Wnt5a‑mediated Wnt/β‑catenin signaling pathway [J]. Mol Med Rep, 2021,23(2):94.
CHIODONI C, DI MARTINO M T, ZAZZERONI F, et al. Cell communication and signaling: how to turn bad language into positive one [J]. J Exp Clin Cancer Res,2019,38(1):128.
PARK Y J, YOO S A, KIM M, et al. The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases [J]. Front Immunol, 2020,11(2):195.
XIN B, JI K Q, LIU Y S, et al. Higher expression of calcineurin predicts poor prognosis in unique subtype of ovarian cancer [J]. J Ovarian Res, 2019,12(1):75.
GRAEF I A, CHEN F, CHEN L, et al. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature [J]. Cell, 2001, 105(7): 863-875.
LEE H S, JEONG G S. Aromadendrin inhibits T cell activation via regulation of calcium influx and NFAT activity [J].Molecules, 2020,25(19):4590.
ZHANG L, DAVIES J S, SERNA C, et al. Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models [J]. J Immunother Cancer, 2020, 8(1): e000210.
XIN B, JI K Q, LIU Y S, et al. NFAT overexpression correlates with CA72-4 and poor prognosis of ovarian clear-cell carcinoma subtype [J]. Reprod Sci, 2021,28(3):745-756.
WANG W, ZAFAR A, RAJAEI M, et al. Two birds with one stone: NFAT1-MDM2 dual inhibitors for cancer therapy [J]. Cells, 2020,9(5):1176.
LIU Y, LIANG T, QIU X, et al. Down-regulation of Nfatc1 suppresses proliferation, migration, invasion, and warburg effect in prostate cancer cells [J]. Med Sci Monit, 2019,25(2):1572-1581.
HUANG B, HE Y, LI S, et al. The RCAN1.4-calcineurin/NFAT signaling pathway is essential for hypoxic adaption of intervertebral discs [J]. Exp Mol Med, 2020,52(5):865-875.
YU M, REN L, LIANG F, et al. Effect of epiberberine from Coptis chinensis Franch on inhibition of tumor growth in MKN-45 xenograft mice [J]. Phytomedicine, 2020,76(4):153216.
王恩宇,王景辉,丁芮,等.“黄连-半夏”药对治疗胃癌的网络药理学研究和实验验证[J].中国中药杂志,2020,45(8):1779-1788.
DU Z, WANG Q, MA G, et al. Inhibition of Nrf2 promotes the antitumor effect of Pinelliae Rhizome in papillary thyroid cancer [J]. J Cell Physiol, 2019,234(8):13867-13877.
KU J M, HONG S H, KIM H I, et al. Synergistic anticancer effect of combined use of Trichosanthes kirilowii with cisplatin and pemetrexed enhances apoptosis of H1299 non-small-cell lung cancer cells via modulation of ErbB3 [J]. Phytomedicine, 2020,66(21):153109.
HUNSAKUNACHAI N, NUENGCHAMNONG N, JIRATCHARIYAKUL W, et al. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats [J]. BMC Complement Altern Med,2019,19(1):157.
YONG J, ZU R, HUANG X, et al. Synergistic effect of berberine hydrochloride and fluconazole against candida albicans resistant isolates [J]. Front Microbiol,2020,11(5):1498.
PAUL M, HEMSHEKHAR M, KEMPARAJU K, et al. Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity [J]. Free Radic Biol Med,2019,130(4):196-205.
FAN J, LI B R, ZHANG Q, et al. Pretreatment of IEC-6 cells with quercetin and myricetin resists the indomethacin-induced barrier dysfunction via attenuating the calcium-mediated JNK/Src activation [J]. Food Chem Toxicol,2021,147(2):111896.
HUANG K H, CHEN C Y, CHANG C Y, et al. The synergistic effects of quercetin-containing 3D-printed mesoporous calcium silicate/calcium sulfate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis in mesenchymal stem cells [J]. J Formos Med Assoc, 2021,120(8):1627-1634.
SAUL D, WEBER M, ZIMMERMANN M H, et al. Effect of the lipoxygenase inhibitor baicalein on bone tissue and bone healing in ovariectomized rats [J]. Nutr Metab (Lond), 2019,16(6):4.
SONG J, TANG Z, LI H, et al. Role of JAK2 in the pathogenesis of diabetic erectile dysfunction and an intervention with berberine [J]. J Sex Med,2019,16(11):1708-1720.
HU Q, LI L, ZOU X, et al. Berberine attenuated proliferation, invasion and migration by targeting the AMPK/HNF4α/Wnt5a pathway in gastric carcinoma [J]. Front Pharmacol, 2018,9(6):1150.
WEN N, XUE L, YANG Y, et al. Coptisine, a protoberberine alkaloid, relaxes mouse airway smooth muscle via blockade of VDLCCs and NSCCs [J]. Biosci Rep,2020,40(2):BSR20190534.
YANG Y, LIU X, WU T, et al. Quercetin attenuates AZT-induced neuroinflammation in the CNS [J]. Sci Rep,2018,8(1):6194.
PARK D J, KANG J B, SHAH F A, et al. Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model [J]. Lab Anim Res,2021,37(1):9.
ZHU Y, FANG J, WANG H, et al. Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca(2+)-dependent pathway [J]. Drug Des Devel Ther ,2018,12(2):3247-3261.
AHMAD T, SHAH A J, KHAN T, et al. Mechanism underlying the vasodilation induced by diosmetin in porcine coronary artery [J]. Eur J Pharmacol, 2020;884(2):173400.
JIANG X, ZHANG Z, SONG C, et al. Glaucocalyxin A reverses EMT and TGF-β1-induced EMT by inhibiting TGF-β1/Smad2/3 signaling pathway in osteosarcoma [J]. Chem Biol Interact, 2019,307(10):158-166.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构