浏览全部资源
扫码关注微信
1.山东中医药大学,济南 250355
2.青岛大学 附属医院,山东 青岛 266005
倪雯婷,在读硕士,从事中药新药研发,E-mail:1258022966@qq.com
张晓平,讲师,博士,从事中药新药研发及炮制原理研究,E-mail:xia_opingzhang@126.com; *
田景振,教授,博士生导师,博士,从事中药新药研发研究,E-mail:tianjingzhen@163.com
纸质出版日期:2022-06-20,
网络出版日期:2022-04-15,
收稿日期:2021-12-06,
扫 描 看 全 文
倪雯婷,马大龙,邵骏菁等.基于网络药理学和实验验证探索荆防合剂治疗甲型H1N1流感的作用机制[J].中国实验方剂学杂志,2022,28(12):200-209.
NI Wen-ting,MA Da-long,SHAO Jun-jing,et al.Molecular Mechanism of Jingfang Mixture Against H1N1 Influenza Based on Network Pharmacology and Experimental Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(12):200-209.
倪雯婷,马大龙,邵骏菁等.基于网络药理学和实验验证探索荆防合剂治疗甲型H1N1流感的作用机制[J].中国实验方剂学杂志,2022,28(12):200-209. DOI: 10.13422/j.cnki.syfjx.20220815.
NI Wen-ting,MA Da-long,SHAO Jun-jing,et al.Molecular Mechanism of Jingfang Mixture Against H1N1 Influenza Based on Network Pharmacology and Experimental Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(12):200-209. DOI: 10.13422/j.cnki.syfjx.20220815.
目的
2
预测荆防合剂治疗甲型H1N1流感的潜在靶点及作用机制,以期为荆防合剂临床应用提供参考依据。
方法
2
通过中药系统药理学分析平台数据库(TCMSP)、SwissTargetPrediction、TargetNet数据库筛选荆防合剂抗甲型H1N1流感的活性成分及作用靶点,通过GeneCards、在线人类孟德尔遗传数据库(OMIM)、DisGeNet数据库获取甲型H1N1流感靶点并统一使用UniProt KB数据库进行标准化,借助Venny 2.1.0在线平台获取两者交集靶点;采用Cytoscape 3.2.1软件建立“药物-成分-靶点”网络图并进行拓扑学属性分析;将交集靶点上传至STRING 11.5数据库获得蛋白质-蛋白质相互作用(PPI)关系网络,并在Metascape平台中进行基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)分析。最后通过Autodock vina软件将度值靠前的活性成分和关键核心靶点进行对接验证,并用PyMOL软件进行可视化分析。采用BALB/C雌鼠进行实验验证,苏木素-伊红(HE)染色观察肺组织病变情况,酶联免疫吸附测定法(ELISA)检测肿瘤坏死因子-
α
(TNF-α)、白细胞介素-10(IL-10)、白细胞介素-17(IL-17)因子水平,实时荧光定量聚合酶链式反应(Real-time PCR)和蛋白免疫印迹法(Western blot)检测各组动物肺组织mRNA和蛋白表达水平。
结果
2
荆防合剂中共有活性成分144个,获得靶点基因421个,甲型H1N1流感靶点2 956个,两者交集靶点199个,拓扑学分析显示,荆防合剂治疗甲型流感的核心成分为槲皮素、木犀草素和山柰酚,核心靶点为人前列腺素内过氧化物合酶2(PTGS2)、雌激素受体1(ESR1)、诱导型一氧化氮合酶2(iNOS2)、过氧化物酶体增殖物激活受体
γ
(PPARG)、环氧合酶-1(PTGS1)等。GO富集分析中生物学过程(BP)得到697个条目(
P
<
0.01),分子功能(MF)得到59个条目(
P
<
0.01),细胞组成(CC)得到21个条目(
P
<
0.01)。KEGG富集分析中共得到132条信号通路(
P
<
0.01)如磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路、丝裂原活化蛋白激酶(MAPK)信号通路等,大多与调节免疫性炎症有关。分子对接结果显示,荆防合剂的活性成分与核心靶点的结合能均
<
-5.0 kcal·mol
-1
,证明其具有较好的结合活性。HE染色显示给药组动物肺组织明显改善,Real-time PCR和Western blot显示荆防合剂可降低肺组织中PI3K和Akt的表达水平。
结论
2
荆防合剂可通过多成分、多靶点、多通路发挥抗甲型流感病毒的作用,其中的活性成分槲皮素、木犀草素和山柰酚可能通过作用于PTGS2、ESR1、iNOS2、PPARG、PTGS1等靶点,进而对PI3K/Akt、MAPK等信号通路产生炎性控制及免疫调节作用。
Objective
2
To predict the potential targets and mechanism of Jingfang mixture in the treatment of H1N1 influenza and provide references for clinical application of Jingfang mixture.
Method
2
The active components and targets of Jingfang mixture against H1N1 influenza were screened out by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),SwissTargetPrediction, and TargetNet. The targets of H1N1 influenza were obtained from GeneCards,Online Mendelian Inheritance in Man (OMIM), and DisGeNET and standardized by UniProt KB. The intersection targets were obtained by Venny 2.1.0. The "drug-component-target" network was constructed with Cytoscape 3.2.1 and analyzed for the topological attributes. The intersection targets were uploaded to STRING 11.5 to obtain the protein-protein interaction (PPI) network. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out by Metascape. Finally,the top active components ranked by degree were docked to the core targets by Autodock vina and visually analyzed by PyMOL. Balb/c female rats were used for experimental verification. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. Enzyme-linked immunosorbent assay(ELISA)was used to detect the levels of tumor necrosis factor-
α
(TNF-
α
),interleukin-10(IL-10), and interleukin-17(IL-17). Real-time fluorescence-based quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels in lung tissues.
Result
2
There were 144 active components in Jingfang mixture. A total of 421 target genes of Jingfang mixture and 2 956 targets of H1N1 influenza were identified,including 199 common targets. Topological analysis showed that the core components of Jingfang mixture against H1N1 influenza included quercetin,luteolin, and kaempferol,and the core targets included prostaglandin-endoperoxide synthase 2(PTGS2),estrogen receptor alpha(ESR1),inducible nitric oxide synthase 2(iNOS2),peroxisome proliferator-activated receptor
γ
(PPAR
γ
),and cyclooxygenase-1(PTGS1). GO enrichment yielded 697 items in biological process (BP) (
P
<
0.01), 59 items in molecular function (MF)(
P
<
0.01), and 21 items in cellular component (CC) (
P
<
0.01). A total of 132 signaling pathways (
P
<
0.01) were obtained by KEGG enrichment analysis, including phosphatidylinositol 3-kinases(PI3K)/protein kinase B(Akt) signaling pathway and mitogen-activated protein kinase(MAPK) signaling pathway,most of which were related to the regulation of immune inflammation. Molecular docking showed that the binding energy of the active components of Jingfang mixture to the core targets was less than -5.0 kcal·mol
-1
,indicating good binding activity. HE staining showed that the lung tissues were significantly improved after drug intervention,and Real-time PCR and Western blot showed that Jingfang mixture could reduce the mRNA and protein expression of PI3K and Akt in lung tissues.
Conclusion
2
Jingfang mixture can play an anti-viral effect against the influenza A virus through multiple components,multiple targets, and multiple pathways. The active components quercetin,luteolin, and kaempferol may control the inflammation and regulate immunity on the PI3K/Akt,MAPK, and other signaling pathways by acting on targets such as PTGS2,ESR1,iNOS2,PPAR
γ
, and PTGS1.
荆防合剂甲型H1N1流感网络药理学分子对接实验验证
Jingfang mixtureH1N1 influenzanetwork pharmacologymolecular dockingexperimental verification
施琦,邹大阳,杨宇,等.建立可视化甲型H1N1流感病毒的聚合酶螺旋反应检测方法[J].中国国境卫生检疫杂志,2021,44(4):241-245.
DRONINA J,SAMUKAITE-BUBNIENE U,RAMANAVICIUS A.Advances and insights in the diagnosis of viral infections[J].J Nanobiotechnology,2021,19(1):348.
PRACHANRONARONG K L,CANALE A S,LIU P,et al.Mutations in influenza A virus neuraminidase and hemagglutinin confer resistance against a broadly neutralizing hemagglutinin stem antibody[J].J Virol,2019,93(2):e01639-18.
FTOUH M,KALBOUSSI N,ABID N,et al.Contribution of nanotechnologies to vaccine development and drug delivery against respiratory viruses[J].PPAR Res,2021,2021:6741290.
朱志翠,邓思波,张迎春,等.家蝇抗菌肽MAF-1A体外抗甲型流感病毒活性及机制研究[J].中国人兽共患病学报,2019,35(9):791-796.
TAKASHITA E,DANIELS R S,FUJISAKI S,et al.Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir,2017-2018[J].Antiviral Res,2020,175:104718.
CAMPBELL A C,TANNER J J,KRAUSE K L.Optimisation of neuraminidase expression for use in drug discovery by using HEK293-6E cells[J].Viruses,2021,13(10):1893.
ORR-BURKS N,MURRAY J,TODD K V,et al.Drug repositioning of clopidogrel or triamterene to inhibit influenza virus replication in vitro[J].PLoS One,2021,16(10):e0259129.
LIU Z,GU S,ZHU X,et al.Discovery and optimization of new 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline derivatives as potent influenza virus PA(N) inhibitors[J].Eur J Med Chem,2022,227:113929.
伊娜.中药抗流感病毒作用的进展探讨[J].黑龙江医药,2021,34(2):306-308.
王家兴,赵菁莉.赵菁莉运用荆防败毒散治疗风水验案1则[J].湖南中医杂志,2019,35(8):79-80.
赵琰,胡杰,张贵民,等.荆防败毒散的源流与应用[J].环球中医药,2020,13(11):1996-2002.
彭旋铃,张志玲,谢更钟.荆防败毒散加减治疗登革热疑似病例1例[J].中医药导报,2018,24(6):102-103.
JINLONG R U,PENG L I,JINAN WANG ,et al.TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J].J Cheminformatics,2014,6(1):13.
YANG R,YANG H,WEI J,et al.Mechanisms underlying the effects of Lianhua Qingwen on sepsis-induced acute lung injury: A network pharmacology approach[J].Front Pharmacol,2021,12:717652.
JI S,XU F,ZHU R,et al.Mechanism of Yinqin oral liquid in the treatment of chronic pharyngitis based on network pharmacology[J].Drug Des Devel Ther,2021,15:4413-4421.
KIM S,CHEN J,CHENG T,et al.PubChem 2019 update: improved access to chemical data[J].Nucleic Acids Res,2019,47(D1):D1102-D1109.
DAINA A,MICHIELIN O,ZOETE V. SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J].Nucleic Acids Res,2019,47(W1):W357-W364.
YAO Z J,DONG J,CHE Y J,et al.TargetNet:a web service for predicting potential drug-target interaction profiling via multitarget SAR models[J].J Comput Aided Mol Des,2016,305(5):413-424.
STELZER G, ROSEN N, PLASCHKES I, et al.The GeneCards suite: From gene data mining to disease genome sequence analyses[J].Curr Protoc Bioinformatics,2016,54:1.30.1-1.30.33.
AMBERGER J S,BOCCHINI C A,SCHIETTECATTE F,et al.OMIM.org: online mendelian inheritance in man (OMIM®),an online catalog of human genes and genetic disorders[J].Nucleic Acids Res,2015,43(Database issue):D789-D798.
PIÑERO J,BRAVO À,QUERALT-ROSINACH N,et al.DisGeNET:A comprehensive platform integrating information on human disease-associated genes and variants[J].Nucleic Acids Res,2017,45(D1):D833-D839.
The UniProt Consortium.UniProt: A worldwide hub of protein knowledge[J].Nucleic Acids Res,2019,47:D506-D515.
OLIVEROS J C.(2007-2015) Venny.An interactive tool for comparing lists with Venn's diagrams[DB/OL].[2021-12-08].https://bioinfogp.cnb.csic.es/tools/venny/index.htmlhttps://bioinfogp.cnb.csic.es/tools/venny/index.html.
DEMCHAK B,OTASEK D,PICO A R,et al. The Cytoscape Automation app article collection[J]. F1000Res,2018,7:800.
刘璟铭.基于网络药理学探讨黄芪香参汤治疗溃疗性结肠炎的作用机理[D].南京:南京中医药大学,2019.
SZKLARCZYK D,GABLE A L,LYON D,et al.STRING v11: protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Res,2019,47(D1):D607-D613.
ZHOU Y,ZHOU B,PACHE L,et al.Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J].Nat Commun,2019,10(1):1523.
于嘉祥,王安娜,郑一,等.基于网络药理学的半夏-橘红药对治疗代谢综合征的作用机制探析[J].中国实验方剂学杂志,2020,26(21):118-128.
包君丽,韩宇博,张可,等. 基于网络药理学及分子对接研究黄连温胆汤治疗Z综合征作用机制[J].世界中医药,2021,16(3):404-414.
微生信.Bioinformatics[DB/OL].(2020-03-01)[2021-12-06].http://www.bioinformatics.com.cnhttp://www.bioinformatics.com.cn.
BURLEY S K,BERMAN H M,BHIKADIYA C,et al.RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology,biomedicine,biotechnology and energy[J].Nucleic Acids Res,2019,47(D1):D464-D474.
GOODSELL D S,OLSON A J.Automated docking of substrates to proteins by simulated annealing[J].Proteins,1990,8(3):195-202.
OLEG T T , ARTHUR J N . AutoDock Vina: improving the speed and accuracy of docking with a new scoring function,efficient optimiza tion, and multithreading[J].J Comput Chem,2010,31(2):455-461.
戚明珠,张铌雪,苏晓慧,等.黄芪甲苷治疗缺血性脑卒中的网络药理学[J].中国实验方剂学杂志,2021,27(3):163-170.
耿子凯.经方葛根汤抗甲型H1N1流感病毒的作用机制及药效物质研究[D].济南:山东中医药大学,2019.
徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002.
郝民琦,王佳慧,李晓玲,等.基于网络药理学与分子对接探讨黄芪治疗溃疡性结肠炎的作用机制[J].中国药房,2021,32(10):1215-1223.
ERAT T, ÖZDEMIR H, TAŞKINOĞLU T,et al. Frequency of influenza, influenza types and influenza vaccine use in hospitalized children with influenza-like symptoms[J].Mikrobiyol Bul,2020,54(2):318-325.
唐维我,吴佳莹,吴威,等.古今防疫香囊处方对比及相关活性成分和抑菌抗病毒作用研究进展[J].药物评价研究,2021,44(3):652-666.
高凯,宋延平.基于网络药理学和分子对接探索金银花用于甲型H1N1流感的分子机制[J].中国新药杂志,2020,29(23):2729-2737.
邓东沅,顾立刚,刘晓婷,等.木犀草素体外对H1N1感染A549诱导凋亡的干预作用及机制[J].中华中医药杂志,2017,32(4):1524-1527.
JEONG H J,RYU Y B,PARK S J,et al.Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities[J].Bioorg Med Chem,2009,17(19):6816-6823.
马钦海,陈瑞晗,杨子峰.基于网络药理学和分子对接探讨六神胶囊治疗COVID-19的物质基础及作用机制[J]. 南京中医药大学学报,2020,36(6):907-914
FANG J,HAO Q,LIU L,et al. Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection[J].J Virol,2012,86(2):1010-1020.
冯娟,闫奎坡,朱翠玲,等.基于网络药理学与分子对接的加减香砂六君子汤治疗新型冠状病毒肺炎恢复期肺脾气虚证的机制研究[J].药物评价研究,2020,43(9):1673-1684.
周春霞,孙婧,徐凤琴,等.流感病毒性肺炎治疗研究进展[J].中华医院感染学杂志,2020,30(2):302-307.
王勇,王艺霏,马骥,等.连花清瘟胶囊联合奥司他韦治疗儿童流感病毒感染疗效及对NO、IFN-γ、IL-17表达水平的影响[J].中华中医药学刊,2020,38(1):214-216.
0
浏览量
9
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构