浏览全部资源
扫码关注微信
1.贵州中医药大学,贵阳 550002
2.贵州中医药大学 第一附属医院,贵阳 550001
3.贵州中医药大学 第二附属医院,贵阳 550000
周相宇,在读硕士,从事中医药防治脾胃病研究,E-mail:877868961@qq.com
华诏召,硕士,副主任医师,硕士生导师,从事中医药胎产病的临床和基础研究,E-mail:859245757@qq.com
纸质出版日期:2022-12-05,
网络出版日期:2022-09-08,
收稿日期:2022-06-08,
扫 描 看 全 文
周相宇,周素芳,何江艳等.基于肠道微生态探究参苓固肠方对妊娠期糖尿病大鼠的影响[J].中国实验方剂学杂志,2022,28(23):53-63.
ZHOU Xiangyu,ZHOU Sufang,HE Jiangyan,et al.Effect of Shenling Guchang Prescription on Gestational Diabetes Rats Based on Intestinal Microecology[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(23):53-63.
周相宇,周素芳,何江艳等.基于肠道微生态探究参苓固肠方对妊娠期糖尿病大鼠的影响[J].中国实验方剂学杂志,2022,28(23):53-63. DOI: 10.13422/j.cnki.syfjx.20222144.
ZHOU Xiangyu,ZHOU Sufang,HE Jiangyan,et al.Effect of Shenling Guchang Prescription on Gestational Diabetes Rats Based on Intestinal Microecology[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(23):53-63. DOI: 10.13422/j.cnki.syfjx.20222144.
目的
2
研究参苓固肠方通过调节肠道菌群及其产物短链脂肪酸干预妊娠期糖尿病大鼠血糖的作用机制。
方法
2
从受孕成功的36只孕鼠中随机选取30只孕鼠进行造模。造模大鼠予以高脂高糖饲料喂养1周后,连续3 d予以35 mg·kg
-1
链脲佐菌素(STZ)构建妊娠期糖尿病模型,造模成功后随机分为模型组、二甲双胍组、参苓固肠方高、中、低剂量组,分别予以18、9、4.5 mg·kg
-1
的参苓固肠方溶液灌胃,二甲双胍组予以52.5 mg·kg
-1
药物溶液灌胃,空白组、模型组予以等体积生理盐水灌胃。末次给药24 h后,鼠尾尖采血检测末次血糖,麻醉下腹主动脉采血,生化法测甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)水平,酶联免疫吸附测定法(ELISA)检测脂多糖(LPS)、白细胞介素-1
β
(IL-1
β
)、白细胞介素-6(IL-6)、肿瘤坏死因子-
α
(TNF-
α
)、胰岛素(INS);取大鼠肠道组织,苏木素-伊红(HE)染色法观察肠道组织病理变化;取大鼠粪便标本,16s rRNA测序检测肠道菌群,气相色谱法检测短链脂肪酸。
结果
2
与空白组比较,模型组大鼠不良妊娠结局发生率明显升高(
P
<
0.05),与模型组比较,参苓固肠方各剂量组及二甲双胍组不良妊娠结局发生率明显降低(
P
<
0.05);与空白组比较,模型组血糖、TG、TC、HDL-C、LDL-C、LPS、IL-1
β
、IL-6、TNF-
α
水平明显升高(
P
<
0.05),肠道组织均有不同程度的炎性改变及黏膜损伤,与模型组比较,参苓固肠方各剂量组及二甲双胍组血糖、TG、TC、HDL-C、LDL-C、LPS、IL-1
β
、IL-6、TNF-
α
等水平有所下调(
P
<
0.05),肠道炎症及肠黏膜损伤得到改善;与空白组比较,模型组肠道菌群功能结构及多样性发生改变(
P
<
0.05),与模型组比较,参苓固肠方各剂量组及二甲双胍组肠道菌群功能结构及多样性回调,趋势接近空白组(
P
<
0.05);与空白组比较,模型组大鼠大肠埃希菌、肠球菌、克雷伯氏杆菌、杜氏菌等致病菌丰度明显升高,普雷氏菌、拟普雷氏菌、阿克曼菌、罗姆布茨菌、毛螺菌等益生菌丰度减少(
P
<
0.05);与模型组比较,参苓固肠方各剂量组及二甲双胍缓释组大肠埃希菌、肠球菌、克雷伯氏杆菌、杜氏菌等致病菌丰度降低(
P
<
0.05),普雷氏菌、拟普雷氏菌、阿克曼菌、罗姆布茨菌、毛螺菌等益生菌丰度上调(
P
<
0.05);与空白组比较,模型组大鼠短链脂肪酸含量明显降低(
P
<
0.05),与模型组比较,参苓固肠方各剂量组及二甲双胍组短链脂肪酸含量增加(
P
<
0.05)。相关性分析表明,在妊娠期糖尿病中,变形菌门与炎症因子、血糖、血脂呈正相关性(
P
<
0.05)。
结论
2
参苓固肠方对妊娠期糖尿病大鼠血糖、血脂、不良妊娠结局有良好的调节作用,其疗效与二甲双胍缓释片相当,其作用机制可能与调节肠道菌群结构,增加短链脂肪酸含量,降低LPS、IL-1
β
、IL-6、TNF-
α
,改善肠道炎症有关。
Objective
2
To study the mechanism of Shenling Guchang prescription on blood glucose of gestational diabetes mellitus rats by regulating intestinal flora and short chain fatty acids.
Method
2
The 30 pregnant rats were randomly selected from 36 pregnant rats which were successfully pregnant. The model rats were fed with high-fat and high-sugar diet for 1 week, and 35 mg·kg
-1
streptozotocin ( STZ ) was given for 3 consecutive days to construct a gestational diabetes model. After successful modeling, the rats were randomly divided into model group, metformin group, Shenling Guchang prescription low-, medium- and high-dose group. The high dose group of Shenling Guchang prescription was given 18 mg·kg
-1
, the middle dose group was given 9 mg·kg
-1
, the low dose group was given 4.5 mg·kg
-1
drug solution by gavage, the metformin group was given 52.5 mg·kg
-1
drug solution by gavage, the blank group and the model group were given equal volume of normal saline by gavage.At 24 h after the last administration, blood samples were collected from the tail tip of the rats to measure the blood glucose, and blood samples were collected from the abdominal aorta under anesthesia to measure the levels of triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Lipopolysaccharides (LPS), interleukin-1
β
(IL-1
β
), interleukin-6 (IL-6), tumor necrosis factor-
α
(TNF-
α
) and insulin (INS) were detected by enzyme-linked immunosorbent assay (ELISA).The intestinal tissue of rats was taken, and the pathological changes of intestinal tissue were observed by hematoxylin-eosin (HE) staining. Fecal samples were collected from rats, 16S rRNA sequencing was used to detect intestinal flora, and short-chain fatty acids were detected by gas chromatography.
Result
2
Compared with the blank group, the incidence of adverse pregnancy outcomes in the model group was significantly increased (
P
<
0.05). Compared with the model group, the incidence of adverse pregnancy outcomes in the Shenling Guchang prescription groups and the metformin group was significantly decreased (
P
<
0.05). Compared with the blank group, the levels of blood glucose, TG, TC, HDL-C, LDL-C, LPS, IL-1
β
, IL-6 and TNF-
α
in the model group were significantly increased (
P
<
0.05), and the intestinal tissues had different degrees of inflammatory changes and mucosal damage. Compared with the model group, the levels of blood glucose, TG, TC, HDL-C, LDL-C, LPS, IL-1
β
, IL-6 and TNF-
α
in each group of Shenling Guchang prescription and metformin group were down-regulated (
P
<
0.05), and intestinal inflammation and intestinal mucosal damage were improved. Compared with the blank group, the functional structure and diversity of intestinal flora in the model group changed (
P
<
0.05). Compared with the model group, the functional structure and diversity of intestinal flora in the Shenling Guchang prescription groups and the metformin group were reversed, and the trend was close to the blank group (
P
<
0.05).Compared with the blank group, the abundance of pathogenic bacteria such as
Escherichia coli
,
Enterococcus
,
Klebsiella
, and
Dustella
in the model group was significantly increased, and the abundance of probiotics such as
Prevotella
,
Prevotella
,
Akmania
,
Rombustella
, and
Lachnospiraceae
was decreased (
P
<
0.05). Compared with the model group, the abundance of pathogenic bacteria such as
Escherichia coli
,
Enterococcus
,
Klebsiella
, and
Dustella
was decreased (
P
<
0.05), and the abundance of probiotic bacteria such as
Prevotella
,
Akmanella
,
Rombustella
, and
Lachnospira
was increased (
P
<
0.05) in the Shenling Guchang prescription groups and the metformin group. Compared with the blank group, the content of short-chain fatty acids in the model group was significantly decreased (
P
<
0.05). Compared with the model group, the content of short-chain fatty acids in each group of Shenling Guchang prescription and metformin group increased (
P
<
0.05). Correlation analysis showed that Proteobacteria was positively correlated with inflammatory factors, blood glucose and blood lipid in gestational diabetes mellitus (
P
<
0.05).
Conclusion
2
Shenling Guchang prescription has a good regulatory effect on blood glucose, blood lipids and adverse pregnancy outcomes in rats with gestational diabetes mellitus. Its efficacy is comparable to that of metformin sustained-release tablets. Its mechanism may be related to regulating the structure of intestinal flora, increasing the content of short-chain fatty acids, reducing LPS, IL-1
β
, IL-6, TNF-
α
, and improving intestinal inflammation.
参苓固肠方妊娠期糖尿病肠道菌群血糖血脂短链脂肪酸炎症因子
Shenling Guchang prescriptiongestational diabetesintestinal florablood glucoseblood lipidshort-chain fatty acidsinflammatory factors
中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].国际内分泌代谢杂志,2021,41(5):482-548.
BEHBOUDI G S,BIDHENDI Y R,PANAHI M H,et al.The effect of mild gestational diabetes mellitus treatment on adverse pregnancy outcomes:A systemic review and meta-analysis[J].Front Endocrinol,2021,26(12):640004.
封慧,朱欣轶,王长松.健脾中药对肠道微生态作用机制研究进展[J].中国中医药信息杂志,2018,25(10):137-140.
LEE S E,CHOI Y,JI E J,et al.Additional effect of dietary fiber in patients with type 2 diabetes mellitus using metformin and sulfonylurea:An open-label,pilot trial[J].Diabetes Metab J,2019,43(4):422-431.
LI G,YIN P,CHU S,et al.Correlation analysis between gdm and gut microbial composition in late pregnancy[J].Diabetes Res,2021,2021:8892849
RAMON V,TADDEI C R,SPARVOLI L G,et al.Microbiome and its relation to gestational diabetes[J].Endocrine,2019,64(2):254-264.
NELSON S M,MATTHEWS P,POSTON L,et al.Maternal metabolism and obesity:Modifiable determinants of pregnancy outcome[J].Hum Reprod Update,2010,16(3):255-275.
MACHATE D J,FIGUEIREDO P S,MARCELINO G,et al.Fatty acid diets:Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis[J].Int J Mol Sci,2020,21(11):4093.
EVERARD A,CANI P D.Gut microbiota and GLP-1[J].Rev Endocr Metab Dis,2014,15(3):189-196.
周素芳,徐思娅,杨景林,等.参苓固肠颗粒联合金双歧治疗腹泻型肠易激综合征脾胃虚弱的临床疗效观察[J].中国微生态学杂志,2016,28(7):795-798.
陈琳,黄小丽,杨亚旭,等.高脂饮食结合STZ诱导妊娠期糖尿病小鼠模型的建立[J].中国比较医学杂志,2016,26(3):15-18.
魏祯,苑宏宇,刘俊希,等.基于合相色谱技术的麻黄多糖干预肺损伤小鼠粪便中短链脂肪酸测定方法的开发[J].中医药学报,2021,49(12):15-22.
HUHTALA M S,TERTTI K,RNNEMAA T.Serum lipids and their association with birth weight in metformin and insulin treated patients with gestational diabetes[J].Diabetes Res Clin Pract,2020,170:108456.
田佳星,赵林华,连凤梅,等.中医药防治糖尿病研究进展述评[J].中医杂志,2015,56(24):2093-2097.
周张杰,蒋海燕,钟薏,等.健脾固肠方通过提高短链脂肪酸产生菌的丰度减轻肠癌小鼠化疗后肠道炎症反应的机制探讨[J].中国中医基础医学杂志,2020,26(5):618-621,632.
张栎婧,战丽彬.基于整合药理学平台探究参苓白术散治疗2型糖尿病的物质基础和作用机制[J].中国实验方剂学杂志,2018,24(21):157-162.
代紫阳,董玉山,丁培杰,等.葛根素通过PI3K/Akt/GSK-3β信号通路调节HepG2细胞胰岛素抵抗[J].中国实验方剂学杂志,2019,25(12):77-82.
王俊丽,欧阳湖,谢虹雅,等.太子参内生细菌RPB-32的分类鉴定及其代谢物对小鼠肠道微生物群落的影响[J].微生物学通报,2021,48(2):502-515.
杨莺,姚新月,李海波.山楂通过肠道菌群治疗脂质代谢异常的实验研究[J].中华中医药学刊,2021,39(12):51-54.
王丽芳,高文远,徐鑫,等.神曲鲜干品组方对食积小鼠胃肠动力及肠道菌群调整的影响[J].中国实验方剂学杂志,2017,23(4):20-24.
VORS C,PINEAU G,DRAI J,et al.Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men:A lipid dose-effect trial[J].Clin Endocrinol Metab,2015,100(9):3427-35.
ZHAO L,ZHANG F,DING X,et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J].Science,2018,359(6380):1151-1156.
CHAMBERS E S,PRESTON T,FROST G,et al.Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health[J].Curr Nutr Rep,2018,7(4):198-206.
GOMES T A,ELIAS W P,SCALETSKY I C,et al.Diarrheagenic escherichia coli[J].Braz J Microbiol,2016,47(Suppl 1):3-30.
BERTANI B,RUIZ N.Function and biogenesis of lipopolysaccharides[J].EcoSal Plus,2018,doi:10.1128/ecosalplus.ESP-0001-2018http://dx.doi.org/10.1128/ecosalplus.ESP-0001-2018.
PEDERSEN H K,GUDMUNDSDOTTIR V,NIELSEN H B,et al.Human gut microbes impact host serum metabolome and insulin sensitivity[J].Nature,2016,535(7612):376-381.
ASNICAR F,BERRY S E,VALDES A M,et al.Microbiome connections with host metabolism and habitual diet from 1 098 deeply phenotyped individuals[J].Nat Med,2021,27(2):321-332.
YAMASHITA H,FUJISAWA K,ITO E,et al.Improvement of obesity and glucose tolerance by acetate in type 2 diabetic otsuka long-evans tokushima fatty (oletf) rats[J].Biosci Biotechnol Biochem,2007,71(5):1236-1243.
CARVALHO B M,GUADAGNINI D,TSUKUMO D,et al.Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice[J].Diabetologia,2012,55(10):2823-2834.
KONDO T,KISHI M,FUSHIMI T,et al.Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J].Agric Food Chem,2009,57(13):5982-5986.
YOON H S,CHO C H,YUN M S,et al.Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice[J].Nat Microbiol,2021,6(5):563-573.
SHANG Q S,SONG G R,ZHANG M F,et al.Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice[J].J Funct Foods,2017,28:138-146.
LIU J,YUE S,YANG Z,et al.Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism[J].Pharmacol Res,2018,134:40-50.
MASKARINEC G,RAQUINIO P ,KRISTAL B S,et al.The gut microbiome and type 2 diabetes status in the Multiethnic Cohort[J].PLoS One,2021,16(6):e0250855.
MANDALIYA D K,SESHADRI S.Short chain fatty acids,pancreatic dysfunction and type 2 diabetes[J].Pancreatology,2019,19(4):617-622.
FROST G,SLEETH M L,SAHURI A M,et al.The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J].Nat Commun,2014,29(5):3611.
KIMURA I,MIYAMOTO J,OHUE-KITANO R,et al.Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice[J].Science,2020,doi:10.1126/science.aaw8429http://dx.doi.org/10.1126/science.aaw8429.
LI H P,CHEN X ,LI M Q .Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity[J].Int J Clin Exp Pathol,2013,6(8):1574-1584.
YAMATO E.High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line[J].Endocr Regul,2018,52(1):21-26.
VADDER F D,KOVATCHEVA-DATCHARY P,GONCALVES D,et al.Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J].Cell,2014,156(1/2):84-96.
TURNBAUGH P J,LEY R E,MAHOWALD M A,et al.An obesity-associated gut microbiome withincreased capacity for energy harvest[J].Nature,444(7122):1027-1031.
KOREN O,GOODRICH J K,CULLENDER T C,et al.Host remodeling of the gut microbiome and metabolic changes during pregnancy[J].Cell,2012,150(3):470-480.
ILARIO F,VALENTINA P,ROBERTO G,et al.Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM)[J].Sci Rep,2018,8(1):12216.
HASAIN Z,MOKHTAR N M,KAMARUDDIN N A.Gut microbiota and gestational diabetes mellitus:A review of host-gut microbiota interactions and their therapeutic potential[J].Front Cell Infect Microbiol,2020,10:188.
WANG J,ZHENG J,SHI W,et al.Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus[J].Gut,2018,67(9):1614-1625.
0
浏览量
16
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构