浏览全部资源
扫码关注微信
上海中医药大学 附属岳阳中西医结合医院,上海 200437
贾默然,在读硕士,从事中西医结合治疗泌尿及男科系统疾病研究,E-mail:1182661679@qq.com
彭煜,博士,主任医师,从事中西医结合治疗泌尿及男科系统疾病研究,E-mail:drypeng@sina.com
纸质出版日期:2023-10-20,
网络出版日期:2022-12-14,
收稿日期:2022-08-01,
扫 描 看 全 文
贾默然,邵轶群,盛东亚等.白花丹素调控Nrf-2/Keap1信号通路诱导膀胱癌细胞铁死亡[J].中国实验方剂学杂志,2023,29(20):39-44.
JIA Moran,SHAO Yiqun,SHENG Dongya,et al.Plumbagin Induces Ferroptosis Through Nrf-2/Keap1 Signaling Pathway in Bladder Cancer Cells[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):39-44.
贾默然,邵轶群,盛东亚等.白花丹素调控Nrf-2/Keap1信号通路诱导膀胱癌细胞铁死亡[J].中国实验方剂学杂志,2023,29(20):39-44. DOI: 10.13422/j.cnki.syfjx.20230323.
JIA Moran,SHAO Yiqun,SHENG Dongya,et al.Plumbagin Induces Ferroptosis Through Nrf-2/Keap1 Signaling Pathway in Bladder Cancer Cells[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):39-44. DOI: 10.13422/j.cnki.syfjx.20230323.
目的
2
探讨白花丹素作为一种新型的铁死亡诱导剂在膀胱癌抑制中的作用机制。
方法
2
本研究中使用了膀胱癌细胞T24。采用细胞增殖与活性检测-8(CCK-8)法检测白花丹素(0.1、1、2、3、6、12、24、48 μmol·L
-1
)对T24细胞活力的影响。采用膜联蛋白V-异硫氰酸荧光素/碘化丙啶(Annexin V FITC/PI)凋亡试剂盒检测白花丹素(1.5、3、6 μmol·L
-1
)对T24细胞凋亡的影响。采用不同的抑制剂(铁死亡抑制剂Fer-1,凋亡抑制剂VAD,坏死性凋亡抑制剂Nec-1)与白花丹素(6 μmol·L
-1
)联合使用。采用活性氧荧光探针(DCFH-DA),丙二醛(MDA)和谷胱甘肽(GSH)试剂盒分别检测不同浓度的白花丹素(1.5、3、6 μmol·L
-1
)对T24细胞内活性氧水平,MDA和GSH的含量,脂质过氧化荧光探针(C11-BODIPY)荧光探针检测白花丹素(1.5、3、6 μmol·L
-1
)对T24细胞中过氧化物水平的影响。蛋白免疫印迹法(Western blot)检测白花丹素(1.5、3、6 μmol·L
-1
)细胞中溶质载体家族7成员11(SLC7A11)、谷胱甘肽过氧化酶(GPX4)、核因子E
2
相关因子-2(Nrf-2)和Kelch样ECH关联蛋白1(Keap1)的蛋白表达的影响。
结果
2
与空白组比较,白花丹素组T24细胞的活性明显降低(
P
<
0.05),IC
50
为3.52 μmol·L
-1
。与空白组比较,白花丹素组(1.5、3、6 μmol·L
-1
)T24细胞凋亡率明显升高(
P
<
0.05);与单独使用6 μmol·L
-1
的白花丹素组比较,铁死亡抑制剂和凋亡抑制剂组能够逆转6 μmol·L
-1
的白花丹素对T24细胞增殖抑制作用(
P
<
0.05)。与空白组比较,白花丹素组(1.5、3、6 μmol·L
-1
),T24细胞ROS、MDA及脂质过氧化物的含量明显升高,GSH水平明显降低,铁死亡相关蛋白SLC7A11、GPX4以及Nrf-2/Keap1明显降低(
P
<
0.05)。
结论
2
白花丹素能诱导细胞铁死亡,其机制与Nrf-2/Keap1信号通路有关。
Objective
2
To explore the mechanism of plumbagin as a novel ferroptosis inducer in bladder cancer inhibition.
Method
2
Bladder cancer T24 cells were used in this study. The effect of different concentrations of plumbagin (0.1, 1, 2, 3, 6, 12, 24, 48 μmol·L
-1
) on the viability of T24 cells was detected by cell counting kit-8 (CCK-8). The effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on the apoptosis of T24 cells was detected by annexin V-fluorescein isothiocyanate (Annexin V FITC)/PI apoptosis kit. Different inhibitors (ferroptosis inhibitor Fer-1, apoptosis inhibitor VAD, and necroptosis inhibitor Nec-1) were used in combination with plumbagin (6 μmol·L
-1
). Reactive oxygen species (ROS) fluorescent probe (DCFH-DA), malonaldehyde (MDA), and glutathione (GSH) kits were used to detect the effects of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on the level of ROS and the content of MDA and GSH in T24 cells, respectively. The effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on peroxide levels in T24 cells was detected by C11-BODIPY fluorescent probe. Western blot was used to detect the effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L
-1
) on the protein expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), nuclear factor E
2
-related factor-2 (Nrf-2), and Kelch-like ECH-associated protein 1 (Keap1).
Result
2
Compared with the blank group, plumbagin could inhibit the activity of T24 cells (
P
<
0.05) with IC
50
of 3.52 μmol·L
-1
. At the concentrations of 1.5, 3, 6 μmol·L
-1
, plumbagin significantly promoted the apoptosis of T24 cells (
P
<
0.05) as compared with the blank group. Compared with the plumbagin group at 6 μmol·L
-1
, the ferroptosis inhibitor and apoptosis inhibitor groups could reverse the inhibitory effect of 6 μmol·L
-1
plumbagin on the proliferation of T24 cells (
P
<
0.05). Compared with the blank group, the plumbagin groups at 1.5, 3, 6 μmol·L
-1
showed increased content of ROS, MDA, and lipid peroxides in T24 cells, decreased GSH level, and reduced SLC7A11, GPX4, and Nrf-2/Keap1 (
P
<
0.05).
Conclusion
2
plumbagin can induce ferroptosis, and its mechanism is related to the Nrf-2/Keap1 signaling pathway.
白花丹素膀胱癌铁死亡核因子E2相关因子-2(Nrf-2)/ Kelch 样环氧氯丙烷相关蛋白1(Keap1)
plumbaginbladder cancerferroptosisnuclear factor E2-related factor-2 (Nrf-2)/Kelch-like ECH-associated protein 1 (Keap1)
BRAY F,FERLAY J,SOERJOMATARAM I,et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2018,68(6):394-424.
CUMBERBATCH M,JUBBER I,BLACK P C,et al. Epidemiology of bladder cancer: A systematic review and contemporary update of risk factors in 2018[J].Eur Urol,2018,74(6):784-795.
CHANG S S.Re: Prediction model for recurrence probabilities after intravesical chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer, including external validation[J].J Urol,2017,198(3):482-483.
袁刚军, 韩娜, 谭星亮,等. 肿瘤微环境中M2巨噬细胞调控CLDN10通路促进膀胱癌细胞的上皮-间质转化[J]. 第三军医大学学报, 2021,43(23):2525-2531.
DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.Ferroptosis: An iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
ZHAO S, LI P, WU W, et al. Roles of ferroptosis in urologic malignancies[J]. Cancer Cell Int, 2021,21(1):676.
LI Z,WANG C,DAI C,et al.Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy[J].Biomaterials,2022,287:121668.
HENRIQUES PALMA G B,KAUR M. Cholesterol depletion modulates drug resistance pathways to sensitize resistant breast cancer cells to tamoxifen[J].Anticancer Res,2022,42(1):565-579.
GHARBARAN R,SHI C,ONWUMERE O,et al.Plumbagin induces cytotoxicity via loss of mitochondrial membrane potential and caspase activation in metastatic retinoblastoma[J].Anticancer Res,2021,41(10):4725-4732.
JIANG Z B,XU C,WANG W,et al.Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells[J].Pharmacol Res,2021,169:105656.
JAMPASRI S,REABROI S,TUNGMUNNITHUM D,et al.Plumbagin suppresses breast cancer progression by downregulating HIF-1α expression via a PI3K/Akt/mTOR independent pathway under hypoxic condition[J].Molecules,2022,27(17):5716.
ZHAN S,LU L,PAN S S,et al.Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth[J].Br J Cancer,2022,127(2):364-376.
杨英杰,黄雯瑾,ALEXIS Z B,等.基于铁死亡调控机制的抗肿瘤药物研究进展[J].中国药学杂志,2022,57(3):165-169.
LEI P,BAI T,SUN Y.Mechanisms of ferroptosis and relations with regulated cell death: A review[J].Front Physiol,2019,10:139.
YAN B,AI Y,SUN Q,et al.Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J].Mol Cell,2021,81(2):355-369.
HASSANNIA B,VANDENABEELE P,VANDEN BERGHE T.Targeting ferroptosis to iron out cancer[J].Cancer Cell,2019,35(6):830-849.
LIU X,WANG T,WANG W,et al.Emerging potential therapeutic targets of ferroptosis in skeletal diseases[J].Oxid Med Cell Longev,2022,2022:3112388.
LI H,YU Y,LIU Y,et al.Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer[J].Pharmacol Res,2022,182:106306.
GAO M,FAN K,CHEN Y,et al.Understanding the mechanistic regulation of ferroptosis in cancer: The gene matters[J].J Genet Genomics,2022,49(10):913-926.
LIU J,ZHANG M,QIN C,et al.Resveratrol attenuate myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction[J].Front Pharmacol,2022,13:906073.
KOPACZ A,KLOSKA D,FORMAN H J,et al.Beyond repression of Nrf2: An update on Keap1[J].Free Radic Biol Med,2020,157:63-74.
BAIRD L,YAMAMOTO M.Nrf2-dependent bioactivation of mitomycin C as a novel strategy to target Keap1-Nrf2 pathway activation in human cancer[J].Mol Cell Biol,2021,41(2):e00473-20.
SUN X,OU Z,CHEN R,et al.Activation of the p62-Keap1-Nrf2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J].Hepatology,2016,63(1):173-184.
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构