浏览全部资源
扫码关注微信
1.中国中医科学院 中医临床基础医学研究所,北京 100700
2.上海中医药大学 脊柱病研究所,上海 200032
3.上海中医药大学 附属龙华医院,上海 200032
4.筋骨理论与治法教育部重点实验室,上海 200032
谢飞彪,在读博士,从事概率论与数理统计研究,E-mail:2423741815@qq.com
王拥军,博士,教授,从事颈腰椎疾病、脊柱肿瘤、中医药治疗骨退行性病变及骨肿瘤研究,E-mail:yjwang8888@126.com;
杨伟,博士,副研究员,从事中医药观察性数据的统计学习及因果推断方法研究,E-mail:yangyxq@ruc.edu.cn
纸质出版日期:2023-12-05,
网络出版日期:2023-01-31,
收稿日期:2022-09-13,
扫 描 看 全 文
谢飞彪,王晶,向兴华等.基于Bagging结合LASSO回归的规则集成方法对骨质疏松症患者肾阳虚证的辨识研究[J].中国实验方剂学杂志,2023,29(23):150-157.
XIE Feibiao,WANG Jing,XIANG Xinghua,et al.Identification of Kidney-Yang Deficiency Syndrome in Osteoporosis Patients Based on Rule Ensemble Method of Bagging Combining LASSO Regression[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(23):150-157.
谢飞彪,王晶,向兴华等.基于Bagging结合LASSO回归的规则集成方法对骨质疏松症患者肾阳虚证的辨识研究[J].中国实验方剂学杂志,2023,29(23):150-157. DOI: 10.13422/j.cnki.syfjx.20230449.
XIE Feibiao,WANG Jing,XIANG Xinghua,et al.Identification of Kidney-Yang Deficiency Syndrome in Osteoporosis Patients Based on Rule Ensemble Method of Bagging Combining LASSO Regression[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(23):150-157. DOI: 10.13422/j.cnki.syfjx.20230449.
目的
2
研究骨质疏松症(OP)患者的肾阳虚证辨识,形成中医临床辨证规则。
方法
2
纳入982例OP患者的基本信息、病因病机、临床症状等特征信息,通过统计检验筛选数据中与肾阳虚证相关的变量。以决策树为基础模型,应用引导聚集算法(Bagging算法)建立OP肾阳虚证分类模型,生成大量规则并去除冗余;结合最小绝对值收敛和选择算子(LASSO)回归筛选关键规则并集成规则建立辨识模型,实现对OP患者肾阳虚证的辨识。
结果
2
筛选出了18条关键辨识规则,其中11条规则的回归系数>0,对辨识为肾阳虚证具有正向影响,系数最高的规则为畏寒(“有”)&手足心热(“无”);7条规则的回归系数<0,对辨识为肾阳虚证具有负向影响,系数最低的规则为舌红(“有”)&大便溏(“无”)&禀赋不足(“无”)。根据各关键规则的回归系数计算得到重要性>0.2的变量依次为畏寒、舌红、手足心热、肢冷、小便清、大便溏、禀赋不足、久病。辨识模型的偏依赖性分析结果显示,畏寒取值为“有”相较取值为“无”的OP患者,被辨识为肾阳虚证的概率高0.266 8,该变量对辨识为肾阳虚证具有最高影响。舌红取值为“有”相较取值为“无”的OP患者,被辨识为肾阳虚证的概率低0.141 9,该变量对辨识为非肾阳虚证具有最高影响。所建立的OP肾阳虚证辨识模型在测试集的正确率、灵敏度、特异度、受试者工作特征曲线(ROC曲线)下面积(AUC)分别为0.865 9、0.853 7、0.872 0、0.931 5。
结论
2
基于Bagging结合LASSO回归的规则集成方法,构建了更加精确的OP肾阳虚证辨识模型,筛选出的关键规则能较好解释肾阳虚证辨识过程,可辅助OP肾阳虚证的中医临床辨证。
Objective
2
To investigate the identification of kidney Yang deficiency syndrome of patients with osteoporosis(OP), and to form the clinical syndrome identification rules of traditional Chinese medicine(TCM).
Method
2
Basic information, etiology, clinical symptoms and other characteristics of 982 OP patients were included, and statistical tests were used to screen the variables associated with kidney Yang deficiency syndrome. Taking the decision tree as the base model, bootstrap aggregation algorithm(Bagging algorithm) was utilized to establish the classification model of kidney Yang deficiency syndrome in OP, generating numerous rules and removing redundancy. Combining least absolute shrinkage and selection operator(LASSO) regression to screen key rules and integrate them to construct an identification model, achieving the identification of kidney Yang deficiency syndrome in OP patients.
Result
2
Eighteen key identification rules were screened out, and of these, where 11 rules with regression coefficients>0 correlated positively with the kidney Yang deficiency syndrome, the rule with the highest coefficient was chilliness(present)&feverish sensation over the palm and sole(absent). The other 7 rules with regression coefficients<0 correlated negatively with the syndrome, the rule with the lowest coefficient was reddish tongue(present)&diarrhea(absent)&deficiency of endowment(absent). According to the regression coefficients of each key rule, variables with importance>0.2 were ranked as chilliness, reddish tongue, feverish sensation over the palm and sole, cold limbs, clear urine, diarrhea, deficiency of endowment, prolonged illness. The results of the partial dependence analysis of the identification model showed that compared to OP patients without chilliness, those with chilliness(present) had a 0.266 8 higher probability of being identified as having kidney Yang deficiency syndrome, indicating that this variable had the highest impact on identification of the syndrome. Similarly, compared to OP patients without reddish tongue, those with reddish tongue had a 0.141 9 lower probability of being identified as having kidney Yang deficiency syndrome, indicating that this variable had the highest impact on identifying non-kidney Yang deficiency syndrome. The accuracy, sensitivity, specificity and area under receiver operating characteristic curve(AUC) of the established kidney Yang deficiency syndrome identification model in the test set were 0.865 9, 0.853 7, 0.872 0 and 0.931 5, respectively.
Conclusion
2
A precise identification model of OP kidney Yang deficiency syndrome is conducted basing on the rule ensemble method of Bagging combining LASSO regression, and the screened key rules can explain the identification process of kidney Yang deficiency syndrome. In this research, according to the regression coefficients of rules, the importance and partial dependence of variables, combined with the thinking of TCM, the influence of patient characteristics on the identification of syndromes is described, so as to reveal the primary and secondary syndromes of identification and assist the clinical identification of kidney Yang deficiency syndrome.
骨质疏松症肾阳虚证规则集成预测方法辨识模型变量重要性偏依赖性
osteoporosiskidney Yang deficiency syndromerule ensembleprediction methodidentification modelvariable importancepartial dependence
BIJLSMA A Y,MESKERS C G M,WESTENDORP R G J,et al.Chronology of age-related disease definitions:Osteoporosis and sarcopenia[J].Ageing Res Rev,2012,11(2):320-324.
CHENG X G,ZHAO K P,ZHA X J,et al.Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China:A nationwide,multicenter study[J].J Bone Miner Res,2021,36(3):427-435.
王雨榕,邓强,李中锋,等.温肾强骨丸治疗脾肾阳虚型骨质疏松症模型大鼠的药效学研究[J].中药新药与临床药理,2021,32(3):357-364.
葛继荣,郑洪新,万小明,等.中医药防治原发性骨质疏松症专家共识(2015)[J].中国骨质疏松杂志,2015,21(9):1023-1028.
肖菲,高毅,师伟,等.绝经后骨质疏松症中医证型与握力的研究[J].中国骨质疏松杂志,2021,27(2):167-171.
笪巍伟,唐德志,金镇雄,等.基于数据挖掘分析中老年骨质疏松患者中医证型分布特征的研究[J].中国骨质疏松杂志,2020,26(3):425-430.
谢雁鸣,宇文亚,董福慧,等.原发性骨质疏松症中医临床实践指南(摘录)[J].中华中医药杂志,2012,27(7):1886-1890.
YANG W,YI D H,XIE Y M,et al.Statistical identification of syndromes feature and structure of disease of western medicine based on general latent structure model[J].Chin J Integr Med,2012,18(11):850-861.
关松林.机器学习在疾病诊断中的应用[D].重庆:重庆大学,2019.
高泽伦.基于机器学习的疾病诊断模型研究[D].兰州:西北师范大学,2021.
谢飞彪,彭叶辉,杨伟,等.真实世界医院集中监测中药不良反应的类不平衡高维预测及其风险因素分类识别[J].中国实验方剂学杂志,2023,29(14):114-122.
康莉,贾琼,罗向霞.糖尿病视网膜病变的中医证型与肾损害敏感指标相关性研究[J].中国中医眼科杂志,2021,31(11):794-798.
殷美琦,刘元君,牟宗平,等.不同中医证型2型糖尿病患者肠道菌群差异研究[J].辽宁中医杂志,2023,50(4):1-7,221.
张珂珂,袁占盈,魏桂梅,等.老年2型糖尿病合并冠心病不同中医证型与UA、HCY、颈动脉IMT相关性分析[J].中医学报,2022,37(11):2446-2451.
陈楚瑶,方崇锴,聂多锐,等.结直肠癌肝转移中医证型与凝血指标的预后分析[J].中医肿瘤学杂志,2022,4(5):9-16.
曹俊昌.糖尿病视网膜病变中医证型与踝肱指数、内脏脂肪及血清糖脂代谢的相关性研究[D].福州:福建中医药大学,2022.
李洪峥,王阶,郭雨晨,等.基于改良Transformer算法的冠心病证候要素诊断处方模型分析[J].中国实验方剂学杂志,2023,29(1):148-154.
车前子,王晶,白卫国,等.基于LASSO回归的骨质疏松肾阳虚状态辨识模型研究[J].中华中医药杂志,2022,37(10):5928-5933.
郭嘉良.海岸带渔业生态经济系统的随机梯度和规则集成评价预测[D].天津:天津大学,2010.
李素清,王洪礼.基于规则集成和RFA的中铁十三局发展预测研究[J].天津大学学报:社会科学版,2012,14(6):520-523.
岳明.基于随机森林和规则集成法的酒类市场预测与发展战略[D].天津:天津大学,2008.
向兴华,彭叶辉,杨伟,等.顽固性高血压发生主要不良心血管事件患者的中医四诊信息可解释性研究——基于随机森林规则提取方法[J].中医杂志,2022,63(7):628-634.
朱灿杰.基于集成学习与规则提取的多标记学习方法在高血压证素辩证中的研究[D].深圳:深圳大学,2017.
DENG H.Interpreting tree ensembles with inTrees[J].Int J Data Sci Anal,2019,7(4):277-287.
FOKKEMA M.Fitting prediction rule ensembles with R package pre[J].J Stat Softw,2020,92(12):1-30.
WANG J,SHU B,LI C G,et al.Polymorphisms of genes related to vitamin D metabolism and transportation and its relationship with the risk of osteoporosis:Protocol for a multicentre prospective cohort study in China[J].BMJ Open,2019,9(11):e028084.
马远征,王以朋,刘强,等.中国老年骨质疏松诊疗指南(2018)[J].中国老年学杂志,2019,39(11):2557-2575.
程晓光,王亮,曾强,等.中国定量CT(QCT)骨质疏松症诊断指南(2018)[J].中国骨质疏松杂志,2019,25(6):733-737.
葛继荣,王和鸣,郑洪新,等.中医药防治原发性骨质疏松症专家共识 (2020)[J].中国骨质疏松杂志,2020,26(12):1717-1725.
YOUDEN W J.Index for rating diagnostic tests[J].Cancer,1950,3(1):32-35.
ROBIN X,TURCK N,HAINARD A,et al.pROC:An open-source package for R and S+ to analyze and compare ROC curves[J].BMC Bioinformatics,2011,12:77.
郑洪新,李佳.肾阳虚证的证候要素与核心病机[J].中国中医基础医学杂志,2021,27(8):1197-1200.
李健阳,葛继荣,陈娟,等.2389例绝经后妇女骨量丢失不同阶段的中医证候特征研究[J].中华中医药杂志,2021,36(1):389-393.
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构