浏览全部资源
扫码关注微信
河南中医药大学 药学院,河南省中药质量控制与评价工程技术研究中心,郑州 450046
张娟,博士,副教授,从事仪器分析及中药分析研究,E-mail:zj19820305@163.com
谢彩侠,博士,教授,从事中药质量控制研究,E-mail:nanyangxcx@126.com
纸质出版日期:2023-10-20,
网络出版日期:2022-12-23,
收稿日期:2022-11-07,
扫 描 看 全 文
张娟,黄凤玉,王庆婷等.盾叶薯蓣制备薯蓣皂苷元方法的研究进展[J].中国实验方剂学杂志,2023,29(20):274-282.
ZHANG Juan,HUANG Fengyu,WANG Qingting,et al.Preparation of Diosgenin from Dioscorea zingiberensis: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):274-282.
张娟,黄凤玉,王庆婷等.盾叶薯蓣制备薯蓣皂苷元方法的研究进展[J].中国实验方剂学杂志,2023,29(20):274-282. DOI: 10.13422/j.cnki.syfjx.20230564.
ZHANG Juan,HUANG Fengyu,WANG Qingting,et al.Preparation of Diosgenin from Dioscorea zingiberensis: A Review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(20):274-282. DOI: 10.13422/j.cnki.syfjx.20230564.
传统工业广泛采用直接酸水解盾叶薯蓣根茎制备薯蓣皂苷元,该方法大量使用无机酸催化剂,废水排放量大,环境污染严重。因此,探寻清洁、高效的制备方法和工艺成为实现薯蓣皂苷元工业生产可持续发展的必然选择。故笔者综述并分析了近10年来酶水解、微生物转化及改进酸水解等方法在盾叶薯蓣制备薯蓣皂苷元中的研究进展及存在问题,并展望了其应用前景。酶水解反应条件温和,但薯蓣皂苷元产率低、经济成本高、活性酶纯化过程复杂。微生物特异性好,转化效率高、转化过程清洁环保,但转化周期长,代谢产物复杂。改进酸水解法中,双相酸水解工艺优势在于酸使用量减少,磺酸功能化离子液体催化优势在于可代替无机酸,循环性能良好,但二者均无法避免废液排放,固体酸催化剂无腐蚀性,易回收,但需使用乙醇作为反应溶剂具有一定安全隐患,且催化剂制备过程繁琐。综上所述,探索清洁高效的转化方法是盾叶薯蓣制备薯蓣皂苷元的重要发展趋势。对于酶水解法,应深入探寻生物转化过程中的关键糖苷水解酶,充分阐明酶解皂苷的转化路径及酶特异性,着力提高酶水解效率;对于微生物转化法,以选育高效转化菌株为基础,优化稳定的转化体系和转化过程,加快推动微生物转化的工业应用进程,深入探究生物转化机制,充分阐明特异性关键水解酶及其催化特性,着力提高生物转化效率;对于改进酸水解法,探索使用结构简单、性能稳定、可生物降解的新型酸催化体系,有效解决环境污染及生产安全问题。
Direct acid hydrolysis of
Dioscorea zingiberensis
rhizomes for preparation of diosgenin is wildly used in the traditional industry, which uses a large amount of inorganic acid catalysts, with high wastewater discharge and serious environmental pollution. Therefore, exploring clean and efficient preparation methods and processes has become an inevitable choice to realize the sustainable development of industrial production of diosgenin. Herein, the author reviewed and analyzed the research progress and problems of enzymatic hydrolysis, microbial transformation and modified acid hydrolysis in the preparation of diosgenin from
D. zingiberensis
rhizomes during the last ten years, and their application prospects are analyzed. Enzymatic hydrolysis has mild reaction conditions, but the yield of diosgenin is low, the economic cost is high, and the purification process of active enzyme is complicated. Microorganism shows specific activity to the substrate and high efficiency for diosgenin production, and microbial transformation is clean and environmentally friendly, but microbial transformation is time-consuming and the metabolic intermediates are complicated. For the modified acid hydrolysis, two-phase acid hydrolysis can reduce the amount of acid catalyst, and sulfonic acid-functionalized ionic liquid displays good recyclable performance by replacing the traditional inorganic acid, however, the wastewater discharge should still be considered. Solid acid catalysts are non-corrosive and easy to be recycled, but the need to use ethanol as the reaction solvent has certain safety hazards, and the catalyst preparation process is cumbersome. In conclusion, exploring clean and efficient conversion methods is an important research trend for preparation of diosgenin from
D. zingiberensis
rhizomes. For the enzymatic hydrolysis, the key glycoside hydrolases in the bioconversion process should be explored in depth, the conversion pathway of enzymatic saponins and enzyme specificity should be fully elucidated, and efforts should be made to improve the efficiency of enzymatic hydrolysis. For the microbial transformation, we should accelerate its industrial application process based on selecting and breeding efficient transformation strains, and optimizing stable transformation systems and processes, and in-depth investigation of the mechanism of microbial transformation, fully elucidating the specific key hydrolases and its catalytic properties, and striving to improve the efficiency of microbial transformation. For the modified acid hydrolysis, novel acid catalytic system with simple structure, stable performance and good biodegradability should be explored and applied, which can effectively solve the problems of environmental pollution and production safety.
盾叶薯蓣薯蓣皂苷元酶解酸水解微生物转化清洁制备
Dioscorea zingiberensis rhizomesdiosgeninenzymatic hydrolysisacid hydrolysismicrobial transformationclean preparation
张释晴,宋雨轩,张文雪,等.抗肿瘤天然产物薯蓣皂苷元的研究进展[J].中国中药杂志,2021,46(17):4360-4366.
李陶然,周小青,刘宏栋,等.治疗阿尔茨海默病的皂苷类成分及其作用机制研究进展[J].中国实验方剂学杂志,2021,28(14):216-225.
罗卓玛,胡越高,王璐红,等.薯蓣皂苷元抗肿瘤衍生物的合成及其生物活性的研究[J].有机化学,2018,38(4):919-925.
ROTHROCK J W,HAMMES P A,MCALEER W J.Isolation of diosgenin by acid hydrolysis of saponin[J].Ind Eng Chem,1957,49(2):186-188.
王俊,陈钧,杨克迪,等.水解原位萃取薯蓣皂苷元的工艺条件研究[J].中国中药杂志,2003,28(10):40-43.
汤兴利,徐增莱,夏冰,等.盾叶薯蓣皂素提取工艺及检测方法研究进展[J].中药材,2004,27(11):877-880.
韩凤梅,姚向阳,陈勇.盾叶薯蓣纤维素酶酶解工艺研究[J].化学与生物工程,2004,21(6):26-27.
雷震,雷攀,杜士明,等.盾叶薯蓣中薯蓣皂苷元的不同提取方法比较研究[J].中国药业,2015,24(22):24-26.
李会,张佳佳,梁静怡,等.基于酶法辅提和微波酸解的黄姜薯蓣皂苷元清洁生产工艺[J].食品科学,2012,33(20):94-98.
汪朋.盾叶薯蓣中甾体皂苷的提取和薯蓣皂苷元绿色制备工艺研究[D].无锡:江南大学,2015.
雷攀,杨光义,杜士明,等.生物酶预处理-醇提酸解法提取盾叶薯蓣中薯蓣皂苷元的工艺[J].医药导报,2016,35(4):389-393.
高中超.黄姜薯蓣皂苷的泡沫分离及薯蓣皂苷元的制备研究[D].西宁:青海师范大学,2016.
喻书诚,喻家欣,魏蜜,等.不同水解酶组合对黄姜细胞壁降解和皂苷释放量的影响及其结构特征分析[J].湖北大学学报:自然科学版,2020,42(6):603-610.
刘玥,胡立宏,张毅楠.商品化糖苷酶转化糖苷类天然产物研究进展[J].南京中医药大学学报,2020,36(5):721-726.
周中流,李春燕,陈林浩,等.天然产物皂苷类化合物生物转化的研究进展[J].中国实验方剂学杂志,2019,25(16):173-192.
唐俊,葛海涛,张云霞,等.纤维素酶辅助提取盾叶薯蓣中薯蓣皂苷的工艺优化研究[J].中国医药科学,2012,2(1):27-29.
赵敏,谭大维,余河水,等.薯蓣皂苷元的制备方法研究进展[J].中草药,2013,44(13):1860-1866.
魏夺.纤维素酶催化与三液相萃取耦合制备薯蓣皂苷元[D].大连:大连理工大学,2011.
魏夺,董悦生,韩松,等.纤维素酶催化与三液相萃取偶联制备盾叶薯蓣皂苷元[J].化工学报,2012,63(6):1877-1882.
杨转萍.黄姜中薯蓣皂苷的提取纯化及酶解工艺研究[D].西安:陕西科技大学,2011.
赵国强,王常高,林建国,等.黄姜中薯蓣皂苷元提取工艺的优化[J].中成药,2017,39(9):1834-1837.
FU Y Y,YU H S,TANG S H,et al.New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain[J].J Microbiol Biotechnol,2010,20(6):1011-1017.
LEI J,NIU H,LI T H,et al.A novel β-glucosidase from Aspergillus fumigates releases diosgenin from spirostanosides of Dioscorea zingiberensis C. H. Wright(DZW)[J].World J Microbiol Biotechnol,2012,28(3):1309-1314.
王海艳.双相酶水解制备宝藿苷Ⅰ和薯蓣皂苷元的研究[D].镇江:江苏大学,2018.
陈彭月,刘艳,陈莎,等.芍药甘草汤药渣中资源性成分的再利用[J].中国实验方剂学杂志,2021,27(24):171-177.
陶晓赛,陈志红,谢彩侠,等.基于HPLC和NIRS建立快速检测盾叶薯蓣中3种皂苷含量的方法[J].天然产物研究与开发,2020,32(2):305-316.
罗娜.复合酶法提取黄姜中薯蓣皂苷元及其综合利用研究[D].郑州:郑州大学,2006.
钟桂芳,刘径羽,番攀,等.复合酶法提取薯蓣皂素的研究[J].中国酿造,2013,32(5):62-66.
肖婉娜,李欣,赖家良,等.超声辅助复配酶法制备黄姜中薯蓣皂素[J].安徽农业科学,2017,45(16):121-125.
肖婉娜.超声辅助复配酶法制备薯蓣皂素的工艺研究[D].广州:华南农业大学,2017.
李文君,王成章,张水晶,等.多元复合酶降解黄姜薯蓣皂苷元的工艺研究[J].生物质化学工程,2014,48(4):23-27.
闫美屹.生物法制备薯蓣皂素的清洁生产工艺[D].北京:北京化工大学,2015.
HUANG H Z,ZHAO M,LU L,et al.Pathways of biotransformation of zingiberen newsaponin from Dioscorea zingiberensis C. H. Wright to diosgenin[J].J Mol Catal B-Enzmy,2013,98:1-7.
董悦生,齐珊珊,刘琳,等.米曲霉直接转化盾叶薯蓣生产薯蓣皂苷元[J].过程工程学报,2009,9(5):993-998.
QI S S,DONG Y S,ZHAO Y K,et al.Qualitative and quantitative analysis of microbial transformation of steroidal saponins in Dioscorea zingiberensis[J].Chromatographia,2009,69(9/10):865-870.
DONG Y S,TENG H,QI S S,et al.Pathways and kinetics analysis of biotransformation of Dioscorea zingiberensis by Aspergillus oryzae[J].Biochem Eng J,2010,52(2/3):123-130.
刘琳.哈茨木霉生物转化盾叶薯蓣中的皂苷及其产物提取分离[D].大连:大连理工大学,2010.
LIU L,DONG Y S,QI S S,et al.Biotransformation of steriodal saponins in Dioscorea zingiberensis C. H. Wright to diosgenin by Trichoderma harzianum[J].Appl Mocrobiol Biot,2010,85(4):933-940.
ZHU Y L,HUANG W,NI J R,et al.Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation[J].Appl Microbiol Biotechnol,2010,85(5):1409-1416.
ZHU Y L,HUANG W,NI J R.A promising clean process for production of diosgenin from Dioscorea zingiberensis C. H. Wright[J].J Clean Prod,2010,18(3):242-247.
ZHU Y,NI J,HUANG W.Process optimization for the production of diosgenin with Trichoderma reesei[J].Bioprocess Biosyst Eng,2010,33(5):647-655.
朱余玲,黄文,刘葳,等.利用里氏木霉生物转化制备黄姜薯蓣皂甙元的清洁新工艺[J].北京大学学报:自然科学版,2010,46(4):661-666.
ZHENG T X,YU L D,ZHU Y L,et al.Evaluation of different pretreatments on microbial transformation of saponins in Dioscorea zingiberensis for diosgenin production[J].Biotechnol Biotec Eq,2014,28(4):740-746.
张佳佳,李会,李恒,等.高效转化黄姜皂苷为薯蓣皂苷元菌株的筛选及转化条件优化[J].生物工程学报,2013,29(6):848-852.
郭梦真.盾叶薯蓣总皂苷提取及微生物转化研究[D].武汉:华中科技大学,2017.
CHEN Y,DONG Y,CHI Y L,et al.Eco-friendly microbial production of diosgenin from saponins in Dioscorea zingiberensis tubers in the presence of Aspergillus awamori[J].Steroids,2018,136:40-46.
徐利丽.基于生物转化制备异槲皮苷及薯蓣皂苷元的研究[D].镇江:江苏大学,2020.
CHENG Y T,DONG C,HUANG C C,et al.Enhanced production of diosgenin from Dioscorea zingiberensis in mixed culture solid state fermentation with Trichoderma reesei and Aspergillus fumigatus[J].Biotechnol Biotec Eq,2015,29(4):773-778.
SHU G W,WANG Z,CHEN H.Screening and identification of probiotic Lactobacillus for the production of diosgenin from Dioscorea zingiberensis Wright by biotransformation[J].Biotechnol Biotec Eq,2017,31(5):1026-1032.
XIANG H B,ZHANG T,PANG X,et al.Isolation of endophytic fungi from Dioscorea zingiberensis C. H. Wright and application for diosgenin production by solid-state fermentation[J].Appl Microbiol Biotechnol,2018,102(13):5519-5532.
ZHU Y L,ZHU H C,QIU M Q,et al.Investigation on the mechanisms for biotransformation of saponins to diosgenin[J].World J Microbiol Biotechnol,2014,30(1):143-152.
李雅静,王丰青,谢彩侠,等.盾叶薯蓣转录组分析及其皂苷元生物合成关键酶基因的挖掘[J].中草药,2018,49(16):3885-3894.
ZHAO J,ZHENG B,LI Y,et al.Enhancement of diepoxin ζ production by yeast extract and its fractions in liquid culture of Berkleasmium-like endophytic fungus Dzf12 from Dioscorea zingiberensis[J].Molecules,2011,16(1):847-856.
王越,王春慧,张琰,等.盾叶薯蓣内生菌研究进展[J].基因组学与应用生物学,2015,34(8):1808-1811.
王祖华,徐启燃,周顺丽,等.内生Bacillus svelezensis HBB5菌株发酵盾叶薯蓣产薯蓣皂苷元的研究[J].中国微生态学杂志,2021,33(7):774-778.
杨欢,杨克迪,陈钧.双相酸水解法提取薯蓣皂苷元的研究[J].中国现代应用药学,2005,22(4):270-272.
沈玉萍,尹华武,刘瀛浣,等.双相联合酸水解法从黄姜中萃取薯蓣皂苷元的研究[J].中成药,2013,35(10):2272-2274.
夏国华,尹华武,王旭波,等.双相联合酸水解-HPLC法测定中药黄姜中薯蓣皂素的含量[J].天然产物研究与开发,2013,25(12):1699-1703.
王旭波,杨欢,尹华武,等.预发酵-双相联合酸水解法萃取薯蓣皂素的初步研究[J].中国药学杂志,2014,49(3):187-190.
阴春晖,李培琴,赵江林,等.从盾叶薯蓣组培苗中高压酸解制备薯蓣皂苷元[J].天然产物研究与开发,2011,23(1):114-117.
YANG H,YIN H W,WANG X W,et al.In-situ pressurized biphase acid hydrolysis,a promising approach to produce bioactive diosgenin from the tubers of Dioscorea zingiberensis[J].Pharmacogn Mag,2015,11(43):636-642.
YANG H,YIN H W,SHEN Y P,et al.A more ecological and efficient approach for producing diosgenin from Dioscorea zingiberensis tubers via pressurized biphase acid hydrolysis[J].J Clean Prod,2016,doi:10.1016/j.jclepro.2016.05.030http://dx.doi.org/10.1016/j.jclepro.2016.05.030.
杨鹏飞,朱烨婷,方旭,等.加压提取法制备盾叶薯蓣根茎中薯蓣皂苷元[J].中成药,2019,41(11):2745-2747.
尹华武.基于加压双相酸水解技术萃取薯蓣皂苷元的研究[D].镇江:江苏大学,2017.
XIANG CH,ZHANG S Y,CHE Y,et al.Ultrasound-assisted deep eutectic solvent/petroleum ether biphase system for the green and efficient production of diosgenin[J].Clean Eng Technol,2022,doi:10.1016/j.clet.2021.100361http://dx.doi.org/10.1016/j.clet.2021.100361.
SHI S B,WU Y F,ZHANG M T,et al.Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions[J].J Mol Liq,2021,doi:10.1016/j.molliq.2021.117278http://dx.doi.org/10.1016/j.molliq.2021.117278.
VAFAEEZADEH M,ALINEZHAD H.Brønsted acidic ionic liquids:Green catalysts for essential organic reactions[J].J Mol Liq,2016,218:95-105.
LI C,ZHAO J,TONG H X,et al.Design and synthesis of SO3H-functionalized acidic ionic liquids for catalytic conversion of wheat straw to ethyl levulinate[J].Fuel,2023,333:126284.
WANG Y,LUO J,SONG H,et al.New ionic liquid-based preparative method for diosgenin from Rhizoma dioscoreae nipponicae[J].Pharmacogn Mag,2013,9(35):250-254.
WANG P,MA C Y,CHEN S W,et al.Conversion of steroid saponins into diosgenin by catalytic hydrolysis using acid-functionalized ionic liquid under microwave irradiation[J].J Clean Prod,2014,79:265-270.
李谦,高向涛,徐俊清,等.离子交换树脂催化薯蓣皂苷水解[J].应用化学,2009,26(4):431-434.
WANG P,ZHAO Y,LIU J.Versatile design and synthesis of mesoporous sulfonic acid catalysts[J].Sci Bull (Beijing),2018,63(4):252-266.
SHEN B W,YU X J,ZHANG F R,et al.Green production of diosgenin from alcoholysis of Dioscorea zingiberensis C.H.wright by a magnetic solid acid[J].J Cleaner Prod,2020,doi:10.1016/j.jclepro.2020.122297http://dx.doi.org/10.1016/j.jclepro.2020.122297.
SHEN B W,ZHANG F R,ZHAO M Q,et al.Synthesis and characterization of magnetic solid acid Fe3O4@PEI@SO3H and application for the production of diosgenin by alcoholysis of turmeric saponins[J].Mol Catal,2021,doi.10.1016/j.mcat.2021.111751.
JIANG W X,ZHANG F R,SHEN B W,et al.Magnetically recyclable solid acid catalyst Fe3O4@ETMS-TETA-SO3H for efficient alcoholysis of dioscin from Dioscorea zingiberensis C. H. Wrigh[J].Catal Commun,2020,143:106066.
JIANG W X,YU X J,HUI Y,et al.Catalytic alcoholysis of saponins in D. zingiberensis C. H. Wright (Curcuma longa L) with magnetic solid acid to prepare diosgenin by response surface methodology[J].Ind Crop Prod,2021,161:113197.
SHEN B W,YU X J,JIANG W X,et al.Green conversion of saponins to diosgenin in an alcoholysis system catalyzed by solid acid derived from phosphorus tailings[J].ACS Omega,2021,doi:10.1021/acsomega.0c05627http://dx.doi.org/10.1021/acsomega.0c05627.
YUAN H,YU X J,SHEN B W,et al.Preparation of poly(styrene-co-allyl sulfonic acid) as a novel catalyst for the alcoholysis of dioscin[J].Polym Adv Technol,2020,doi:10.1002/pat.4904http://dx.doi.org/10.1002/pat.4904.
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构