浏览全部资源
扫码关注微信
1.中国中医科学院 中药研究所,北京 100700
2.北京化工大学 生命科学与技术学院,北京 100029
3.山东中医药大学 智能与信息工程学院,济南 250355
郭丛,硕士,助理研究员,从事中药质量评价研究,E-mail:cguo@icmm.ac.cn
阎爱侠,教授,从事中药质量评价研究,E-mail:yanax@mail.buct.edu.cn
刘安,研究员,从事中药质量评价研究,E-mail:aliu@icmm.ac.cn
收稿日期:2023-02-06,
网络出版日期:2023-05-06,
纸质出版日期:2023-07-20
移动端阅览
郭丛,田钰嘉,李杨等.基于YOLOv4算法的中药饮片识别[J].中国实验方剂学杂志,2023,29(14):133-140.
GUO Cong,TIAN Yujia,LI Yang,et al.Identification of Chinese Herb Pieces Based on YOLOv4[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):133-140.
郭丛,田钰嘉,李杨等.基于YOLOv4算法的中药饮片识别[J].中国实验方剂学杂志,2023,29(14):133-140. DOI: 10.13422/j.cnki.syfjx.20230614.
GUO Cong,TIAN Yujia,LI Yang,et al.Identification of Chinese Herb Pieces Based on YOLOv4[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):133-140. DOI: 10.13422/j.cnki.syfjx.20230614.
中药饮片是中医药体系的重要组成部分,中药饮片的优劣识别及质量评级可促进其发展利用。利用深度学习对中药饮片进行智能识别,则在省时省力节约成本的前提下,合理避免了人为主观因素的制约,为中药饮片的高效识别提供了保障。该研究构建了包含108种中药饮片的数据集(14 058张图片),利用经典的YOLOv4算法对108种中药饮片建立了目标检测模型,模型的平均识别精度(mAP)为85.3%。此外,该研究也将感受野模块(RFB)添加至经典的YOLOv4算法的颈部网络,并利用改进后的YOLOv4算法对108种中药饮片进行计算预测。改进后的YOLOv4模型的mAP达到88.7%,对80种饮片的识别精度超过80%,对48种饮片的识别精度超过90%。此结果说明增加感受野模块可在一定程度上助于尺寸各异且体积较小的中药饮片的识别。最后,该研究分析了改进后的YOLOv4模型对于每类中药饮片的识别精度,通过对预测精度较低的中药饮片原始照片的深入分析,明晰了中药饮片原始照片的数量和质量是对此进行智能识别任务关键。该研究中构建的改进后的YOLOv4模型可用于中药饮片的快速识别,也为中药饮片的人工鉴伪工作提供可参考性的指引建议。
Chinese herbal piece is an important component of the traditional Chinese medicine (TCM) system, and identifying their quality and grading can promote the development and utilization of Chinese herbal pieces. Utilizing deep learning for intelligent identification of Chinese herbal pieces can save time, effort, and cost, while also reasonably avoiding the constraints of human subjectivity, providing a guarantee for efficient identification of Chinese herbal pieces. In this study, a dataset containing 108 kinds of Chinese herbal pieces (14 058 images) was constructed,the basic YOLOv4 algorithm was employed to identify the 108 kinds of Chinese herbal pieces of our database The mean average precision (mAP) of the developed basic YOLOv4 model reached 85.3%. In addition, the receptive field block was introduced into the neck network of YOLOv4 algorithm, and the improved YOLOv4 algorithm was used to identify Chinese herbal pieces. The mAPof the improved YOLOv4 model achieved 88.7%, the average precision of 80 kinds of decoction pieces exceeded 80%, the average precision of 48 kinds of decoction pieces exceeded 90%. These results indicate that adding the receptive field module can help to some extent in the identification of Chinese herbal medicine pieces with different sizes and small volumes. Finally, the average precision of each kind of Chinese herbal medicine piece by the improved YOLOv4 model was further analyzed. Through in-depth analysis of the original images of Chinese herbal medicine pieces with low prediction average precision, it was clarified that the quantity and quality of original images of Chinese herbal medicine pieces are key to performing intelligent object detection. The improved YOLOv4 model constructed in this study can be used for the rapid identification of Chinese herbal pieces, and also provide reference guidance for the manual authentication of Chinese herbal medicine decoction pieces.
国家药典委员会 . 中华人民共和国药典:一部 [M]. 北京 : 中国医药科技出版社 , 2020 : 15 .
李美英 , 李先元 . 我国中药饮片产业现状的分析与思考 [J]. 中草药 , 2022 , 53 ( 2 ): 635 - 640 .
乐海平 , 易斌 , 黄东 , 等 . 中药饮片行业的现状分析及发展策略探讨 [J]. 药品评价 , 2022 , 19 ( 5 ): 257 - 260 .
郭晓晗 , 张萍 , 荆文光 , 等 . 从2020年国家药品抽检专项有关问题谈中药材及中药饮片监管 [J]. 中国现代中药 , 2021 , 23 ( 10 ): 1679 - 1685 .
叶洵 , 梁琪 , 王丹 , 等 . 中药饮片质量标准性状数字化研究的进展 [J]. 世界中医药 , 2022 , 17 ( 9 ): 1240 - 1245 .
季德 , 李林 , 王吓长 , 等 . 中药饮片产业链质量控制标准进程与展望 [J]. 南京中医药大学学报 , 2020 , 36 ( 5 ): 704 - 709 .
陈雁 , 邹立思 . 基于BMFnet-WGAN的中药饮片智能甄别 [J]. 中国实验方剂学杂志 , 2021 , 27 ( 15 ): 107 - 114 .
钱丹丹 , 周金海 . 基于计算机视觉的中药饮片检测与分级研究 [J]. 时珍国医国药 , 2019 , 30 ( 1 ): 203 - 205 .
张志光 . 基于深度学习的中药饮片识别算法研究与实现 [D]. 邯郸 : 河北工程大学 , 2021 .
吴冲 , 谭超群 , 黄永亮 , 等 . 基于深度学习算法的川贝母、山楂及半夏饮片的智能鉴别 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 21 ): 195 - 201 .
王健庆 , 戴恺 , 李子柔 . 基于深度学习的中药饮片图像识别研究 [J]. 时珍国医国药 , 2020 , 31 ( 12 ): 2930 - 2933 .
张谊 , 万华 , 涂淑琴 . 基于计算机视觉的中药饮片分类技术综述与案例研究 [J]. 计算机应用 , 2022 , 42 ( 10 ): 3224 - 3234 .
BOCHKOVSKIY A , WANG C Y , LIAO M . YOLOv4: optimal speed and accuracy of object detection [EB/OL].( 2020-04-23 )[ 2023-02-06 ]. https://doi.org/10.48550/arXiv.2004.10934 https://doi.org/10.48550/arXiv.2004.10934 .
OpenCV , an open source computer vision and machine learning software library [EB/OL].( 2022-10-15 )[ 2023-02-06 ]. https://opencv.org/ https://opencv.org/ .
labelImg , an image annotation tool [EB/OL].( 2022-10-15 )[ 2023-02-06 ]. https://github.com/heartexlabs/labelImg https://github.com/heartexlabs/labelImg
REDMON J , DIVVALA S , GIRSHICK R , et.al . You only look once:Unified,real-time object detection [EB/OL].( 2016-05-09 )[ 2023-02-06 ]. https://doi.org/10.48550/arXiv.1506.02640 https://doi.org/10.48550/arXiv.1506.02640 .
REDMON J , FARHADI A . YOLOv3:An Incremental Improvement [EB/OL].( 2018-04-28 )[ 2023-02-06 ]. https://doi.org/10.48550/arXiv.1804.02767 https://doi.org/10.48550/arXiv.1804.02767 .
WANG CY , LIAO M , CHEN PY , et.al . CSPNet:A new backbone that can enhance learning capability of CNN [C]// Proceeding of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . Piscataway : IEEE , 2020 : 19854564 .
IOFFE S , SZEGEDY C . Batch normalization: Accelerating deep network training by reducing internal covariate shift [EB/OL].( 2022-10-15 )[ 2023-02-06 ]. https://doi.org/10.48550/arXiv.1502.03167 https://doi.org/10.48550/arXiv.1502.03167
HE K , ZHANG X , REN S , et al . Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Trans Pattern Anal Mach Intell , 2015 , 37 ( 9 ): 1904 - 1916 .
LIN T Y , DOLLÁR P , GIRSHICK R , et.al . Feature Pyramid Networks for Object Detection [C]// Proceeding of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE , 2015 : 17355379 .
LIU S , QI L , QIN H F , et.al . Path aggregation network for instance segmentation [C]// Proceeding of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE , 2018 : 18326168 .
LIU S , HUANG D , WANG Y H . Receptive field block net for accurate and fast object detection [C]// European Conference on Computer Vision , Munich , 2018 : 11215 .
0
浏览量
32
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构