浏览全部资源
扫码关注微信
1.湖南中医药大学,长沙 410208
2.岳阳市妇幼保健院,湖南 岳阳 414000
3.湖南省脑科医院/湖南省第二人民医院,长沙 410021
严婧,主管药师,从事中药药效物质基础及作用机制研究,Tel:0730-8600546,E-mail:YB170710@163.com
谢明霞,博士,讲师,从事中药药效物质基础及其作用机制研究,Tel:0731-88459451,E-mail:xiemingxia0618@163.com
收稿日期:2023-03-06,
网络出版日期:2023-06-01,
纸质出版日期:2023-08-05
移动端阅览
严婧,杨盾,郭东卫等.乌药对大鼠宫腔粘连纤维化的干预作用及其代谢组学分析[J].中国实验方剂学杂志,2023,29(15):142-151.
YAN Jing,YANG Dun,GUO Dongwei,et al.Interventional Effect and Metabolomics Analysis of Linderae Radix on Fibrosis of Rats with Intrauterine Adhesions[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(15):142-151.
严婧,杨盾,郭东卫等.乌药对大鼠宫腔粘连纤维化的干预作用及其代谢组学分析[J].中国实验方剂学杂志,2023,29(15):142-151. DOI: 10.13422/j.cnki.syfjx.20230714.
YAN Jing,YANG Dun,GUO Dongwei,et al.Interventional Effect and Metabolomics Analysis of Linderae Radix on Fibrosis of Rats with Intrauterine Adhesions[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(15):142-151. DOI: 10.13422/j.cnki.syfjx.20230714.
目的
2
探讨乌药对宫腔粘连(IUA)模型大鼠的药效学影响及其代谢机制。
方法
2
建立了一种基于机械损伤+感染的IUA大鼠模型,通过分子生物学及药理学方法和技术评价乌药提取物(LAE)抑制宫腔粘连纤维化的作用;通过基于气相色谱法-质谱法联用(GC-MS)的血清代谢组学方法探讨LAE的代谢调节机制。
结果
2
动物实验表明,LAE能显著改善IUA模型大鼠子宫组织细胞的形态和结构损伤,子宫内膜增殖、血管生成和形态学恢复,并抑制血清转化生长因子-
β
1
(TGF-
β
1
)、Smad2及Smad3 mRNA的表达,而增加Smad7 mRNA表达,以抑制纤维化。此外,LAE可显著抑制雌二醇(E
2
)、促卵泡生成激素(FSH)和促黄体生成素(LH)等激素水平及肿瘤坏死因子(TNF)-
α
的表达(
P
<
0.01),改善子宫微环境。代谢组学表明,与正常组相比,IUA大鼠血清代谢发生显著异常,共筛选鉴定得到9个差异标志物。LAE可显著改善这种代谢异常,主要包括6个差异代谢物,其中5个为上述9个标志物中的共有标志物,分别为天门冬氨酸(
L
-aspartic acid),焦谷氨酸(
L
-pyroglutamic acid),丝氨酸(
L
-serine),葡萄糖(Glucose)和正缬氨酸(
L
-norvaline)。通路富集显示氨酰-tRNA合成通路是其主要的影响机制。
结论
2
结合药理学研究结果可得,LAE可显著改善IUA模型大鼠子宫损伤,抑制纤维化。其机制可能与通过抑制氨酰-tRNA合成通路,改善微环境有关。
Objective
2
To investigate the pharmacological effect and metabolic mechanism of Linderae Radix on the intrauterine adhesion (IUA) rat model.
Method
2
An IUA rat model was induced by mechanical injury and infection. Molecular biology and pharmacology techniques were employed to evaluate the inhibitory effect of Linderae Radix extract (LAE) on fibrosis in IUA. Serum metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) was conducted to explore the metabolic regulation mechanism of LAE.
Result
2
Animal experiments showed that LAE significantly improved the morphology and structural damage of uterine tissue cells in the IUA rat model, promoted endometrial proliferation, vascular regeneration, and morphological recovery, inhibited the mRNA expression of transforming growth factor-
β
1
(TGF-
β
1
), Smad2, and Smad3, and increased the expression of Smad7 mRNA to suppress fibrosis. Additionally, LAE significantly suppressed the levels of estrogen (E
2
), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and tumor necrosis factor-
α
(TNF-
α
) expression (
P
<
0.01), thereby improving the uterine microenvironment. Metabolomics analysis revealed significant metabolic abnormalities in the serum of IUA rats compared with the results in the normal group, and nine differential metabolites were identified. LAE effectively ameliorated these metabolic abnormalities, primarily by influencing six differential metabolites, including five shared metabolites among the nine identified markers:
L-
aspartic acid,
L
-pyroglutamic acid,
L-
serine, glucose, and
L-
norvaline. Pathway enrichment analysis indicated that the aminoacyl-tRNA biosynthesis pathway was the main affecting mechanism.
Conclusion
2
In combination with the pharmacological research results, LAE effectively improved uterine damage and inhibited fibrosis in the IUA rat model. Its mechanism may involve the inhibition of the aminoacyl-tRNA biosynthesis pathway and the improvement of the microenvironment.
DEANS R , ABBOTT J . Review of intrauterine adhesions [J]. J Minim Invasive Gynecol , 2010 , 17 ( 5 ): 555 - 569 .
THOMSON A J , ABBOTT J A , KINGSTON A , et al . Fluoroscopically guided synechiolysis for patients with Asherman's syndrome: Menstrual and fertility outcomes [J]. Fertil Steril , 2007 , 87 ( 2 ): 405 - 410 .
YU D , LI T C , XIA E , et al . Factors affecting reproductive outcome of hysteroscopic adhesiolysis for Asherman's syndrome [J]. Fertil Steril , 2008 , 89 ( 3 ): 715 - 722 .
ROBINSON J K , COLIMON L M , ISAACSON K B . Postoperative adhesiolysis therapy for intrauterine adhesions (Asherman's syndrome) [J]. Fertil Steril , 2008 , 90 ( 2 ): 409 - 414 .
AMIN T N , SARIDOGAN E , JURKOVIC D . Ultrasound and intrauterine adhesions: A novel structured approach to diagnosis and management [J]. Ultrasound Obstet Gynecol , 2015 , 46 ( 2 ): 131 - 139 .
杨永琴 , 尤昭玲 . 尤昭玲对宫腔粘连不孕症经验介绍 [J]. 辽宁中医杂志 , 2014 , 41 ( 9 ): 1826 - 1828 .
刘文娥 , 游卉 , 张婉妮 , 等 . 尤昭玲治疗宫腔粘连经验 [J]. 中医杂志 , 2015 , 56 ( 5 ): 369 - 371 .
吴丹 , 罗健 , 陈伟志 . 补肾活血法对宫腔粘连术后患者子宫内膜及血流参数影响的临床研究 [J]. 成都中医药大学学报 , 2017 , 40 ( 1 ): 26 - 28 .
祝洁 , 薛晓鸥 , 贺稚平 , 等 . 基于p38 MAPK通路探讨乌丹丸对子宫内膜异位症寒凝血瘀证巨噬细胞极化的影响 [J]. 中国实验方剂学杂志 , 2022 , 28 ( 24 ): 105 - 113 .
叶丽妮 , 邝梓君 , 王宣尹 , 等 . 罗氏内异方治疗子宫内膜异位症的研究进展 [J]. 广州中医药大学学报 , 2021 , 38 ( 5 ): 1067 - 1071 .
刘莹 , 李艳红 , 王娜娜 , 等 . 宫腔粘连的中医药治疗思路 [J]. 北京中医药 , 2016 , 35 ( 8 ): 760 - 762 .
SUN L , ZHANG S , CHANG Q , et al . Establishment and comparison of different intrauterine adhesion modelling procedures in rats [J]. Reprod Fertil Dev , 2019 , 31 ( 8 ): 1360 - 1368 .
国家药典委员会 . 中华人民共和国药典:一部 [M]. 北京 : 中国医药科技出版社 , 2020 : 79 .
中华医学会妇产科学分会 . 宫腔粘连临床诊疗中国专家共识 [J]. 中华妇产科杂志 , 2015 , 50 ( 12 ): 881 - 887 .
BOWEN T , JENKINS R H , FRASER D J . MicroRNAs,tansforming growth factor beta-1,and tissue fibrosis [J], J Pathol , 2013 , 229 : 274 - 285 .
PADHI M , TRIPATHY P , SAHU A . Microperforate hymen presenting with incomplete abortion:A case report [J]. J Obstet Gynaecol Res , 2017 , 43 ( 8 ): 1353 - 1355 .
DEANS R , ABBOTT J . Review of intrauterine adhesions [J]. J Minim Invas Gyn , 2010 , 17 ( 5 ): 555 - 569 .
谭雅莉 , 徐佳 , 蒋冬 , 等 . 从TGF- β 1 -PI3K/Akt信号通路研究妇科千金胶囊治疗宫腔粘连大鼠作用机制 [J]. 中国中药杂志 , 2020 , 45 ( 19 ): 4705 - 4711 .
FENG Y , BAO Y , DING J , et al . MicroRNA-130a attenuates cardiac fibrosis after myocardial infarction through TGF- β /Smad signaling by directly targeting TGF- β receptor 1 [J]. Bioengineered , 2022 , 13 ( 3 ): 5779 - 5791 .
QIAN K , LEI X , LIU G , et al . Transient receptor potential vanilloid-1 (TRPV1) alleviates hepatic fibrosis via TGF- β signaling [J]. Dis Markers , 2022 , 2022 : 3100943 .
SULIMAN H B , HEALY Z , ZOBI F , et al . Nuclear respiratory factor-1 negatively regulates TGF- β 1 and attenuates pulmonary fibrosis [J]. iScience , 2022 , 25 ( 1 ): 103535 .
BIAN C , LUAN Z , ZHANG H , et al . miR-154-5p Affects the TGF- β 1 /Smad3 pathway on the fibrosis of diabetic kidney disease via binding E3 ubiquitin ligase smurf1 [J]. Oxid Med Cell Longev , 2022 , 2022 : 7502632 .
WILSON S E . TGF beta -1, -2 and -3 in the modulation of fibrosis in the cornea and other organs [J]. Exp Eye Res , 2021 , 207 : 108594 .
KAVSAK P , RASMUSSEN R K , CAUSING C G , et al . Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation [J]. Mol Cell , 2000 , 6 ( 6 ): 1365 - 1375 .
ZHOU F , LI G Y , GAO Z Z , et al . The TGF- β 1 /Smad/CTGF pathway and corpus cavernosum fibrous-muscular alterations in rats with streptozotocin-induced diabetes [J]. J Androl , 2012 , 33 ( 4 ): 651 - 659 .
HAO M J , CHEN P N , LI H J , et al . β -Carboline alkaloids from the deep-sea fungus Trichoderma sp. MCCC 3A01244 as a new type of anti-pulmonary fibrosis agent that inhibits TGF- β /Smad signaling pathway [J]. Front Microbiol , 2022 , 13 : 947226 .
CHANTALAT E , VALERA M C , VAYSSE C , et al . Estrogen receptors and endometriosis [J]. Int J Mol Sci , 2020 , 21 ( 8 ): 2815 .
HOBBS S , REYNOSO M , GEDDIS A V , et al . LPS‐stimulated NF‐ κ B p65 dynamic response marks the initiation of TNF expression and transition to IL‐10 expression in RAW 264.7 macrophages [J]. Physiol Rep , 2018 , 6 ( 21 ): 1 - 11 .
ZHOU H , SUN L , YANG X L , et al . ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase [J]. Nature , 2013 , 494 ( 7435 ): 121 - 124 .
GOMEZ MAR , IBBA M . Aminoacyl-tRNA synthetases [J]. Rna , 2020 , 26 ( 8 ): 910 - 936 .
岳中正 , 暴磊 , 王迪 , 等 . TGF- β 1 致人胚肺成纤维细胞转分化差异基因的生物信息学分析 [J]. 中国职业医学 , 2018 , 45 ( 3 ): 301 - 307 .
WU J , SUBBAIAH K , XIE L H , et al . Glutamyl-prolyl-tRNA Synthetase regulates proline-rich pro-fibrotic protein synthesis during cardiac fibrosis [J]. Circ Res , 2020 , 127 ( 6 ): 827 - 846 .
SHIBATA A , KUNO M , ADACHI R , et al . Discovery and pharmacological characterization of a new class of prolyl-tRNA synthetase inhibitor for anti-fibrosis therapy [J]. PLoS One , 2017 , 12 ( 10 ): e0186587 .
0
浏览量
35
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构