浏览全部资源
扫码关注微信
江西中医药大学 中医学院,南昌 330004
武妍凝,在读硕士,从事中医药微生态研究,E-mail:553154295@qq.com
舒青龙,教授,从事中医药微生态研究,E-mail:shuqinglong@126.com
纸质出版日期:2023-11-20,
网络出版日期:2023-03-24,
收稿日期:2022-12-24,
扫 描 看 全 文
武妍凝,吴莉,伍荷洁等.从多糖利用位点的差异表达研究两种健脾中药复方多糖影响脆弱拟杆菌体外生长机制[J].中国实验方剂学杂志,2023,29(22):21-28.
WU Yanning,WU Li,WU Hejie,et al.Mechanism of Polysaccharides from Two Spleen-invigorating Chinese Medicine Prescriptions in Regulating Growth of Bacteroides fragilisin vitro: Based on Differential Expression of Polysaccharide Utilization Loci[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(22):21-28.
武妍凝,吴莉,伍荷洁等.从多糖利用位点的差异表达研究两种健脾中药复方多糖影响脆弱拟杆菌体外生长机制[J].中国实验方剂学杂志,2023,29(22):21-28. DOI: 10.13422/j.cnki.syfjx.20230803.
WU Yanning,WU Li,WU Hejie,et al.Mechanism of Polysaccharides from Two Spleen-invigorating Chinese Medicine Prescriptions in Regulating Growth of Bacteroides fragilisin vitro: Based on Differential Expression of Polysaccharide Utilization Loci[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(22):21-28. DOI: 10.13422/j.cnki.syfjx.20230803.
目的
2
探讨两种中药复方多糖作为碳源对脆弱拟杆菌生长的影响及其基于转录组学从多糖利用位点差异表达角度的机制分析。
方法
2
使用不同的碳源培养基(分别以浓度为20%的理中汤多糖和参苓白术散多糖、葡萄糖、脑心浸液(BHI)为唯一碳源)体外厌氧培养脆弱拟杆菌(
Bacteroides fragile
ATCC25285),通过连续取样法和分光光度法测定不同碳源对脆弱拟杆菌ATCC25285的生长影响。再对不同碳源培养基的脆弱拟杆菌ATCC25285进行转录组测序与分析,研究不同碳源影响细菌生长的机制。
结果
2
不同碳源体外培养结果显示,理中汤多糖组、参苓白术散多糖组、BHI组和葡萄糖组分别在26、32、26、38 h细菌生长达到细菌浓度最大值,均可以得到良好生长。转录组测序结果显示,基因本体论(GO)富集表明理中汤多糖组与参苓白术散多糖组集中在二羧酸转运和二羧酸跨膜转运活性等功能条目,多糖利用位点(PULs)差异分析表明参苓白术散多糖组与BHI组比较,两者共同高表达了PUL(4、27)及糖苷水解酶13(GH13)和糖基转移酶5(GT5),参苓白术散组单独高表达了PUL9,BHI组单独高表达PUL(17、19、20)及GH3、GH144;参苓白术散多糖组与葡萄糖组相比,PUL27及GT5在两组中均高表达,参苓白术散多糖组中单独高表达PUL(4、9)及GH13,葡萄糖组中单独高表达PUL(2、17、19)及GH2;理中汤多糖组与BHI组比较,两者共同显著表达PUL(4、17、19、20、27)及GH3、GH144,理中汤多糖组中单独高表达PUL(2、8、23、27)及GH2、GH57,BHI组中单独升高表达的为GH13;理中汤组与葡萄糖组比较,两者共同显著表达了PUL(4、27)及GH2,理中汤多糖组中单独高表达PUL(4、8、20、23)及GH3、GH144,葡萄糖组单独高表达PUL30。
结论
2
不同碳源对脆弱拟杆菌ATCC25285的体外实验与转录组结果相互印证,PULs和GH的表达可能根据不同碳源的营养情况对脆弱拟杆菌ATCC25285适应性生长提供益处或代价,这或许是中药复方多糖调节脆弱拟杆菌ATCC25285的生长机制之一,可为深入研究脆弱拟杆菌代谢途径与中药复方多糖之间的联系提供参考。
Objective
2
To investigate the effects of using the polysaccharides from two Chinese medicine compound prescriptions as the carbon source on the growth of
Bacteroides fragilis
and to decipher the mechanism from the perspective of differential expression of polysaccharide utilization loci (PULs) based on transcriptomics.
Method
2
The media with different carbon sources [20% polysaccharides of Lizhongtang, polysaccharides of Shenling Baizhusan, glucose, and brain heart infusion (BHI) Broth] were used for the anaerobic culture of
B. fragile
ATCC25285. The effects of different carbon sources on the growth of
B. fragilis
ATCC25285 were determined by continuous sampling and spectrophotometry. Then, transcriptome sequencing was performed for the cultures obtained with different carbon sources to study the mechanism of different carbon sources in regulating bacterial growth.
Result
2
The concentration of bacteria with the polysaccharide of Lizhongtang, polysaccharide of Shenling Baizhusan, BHI Broth, and glucose as the carbon sources peaked at 26, 32, 26, 38 h, respectively, and the bacteria in all the four groups achieved robust growth. Gene ontology (GO) enrichment indicated that the differentially expressed genes in the Lizhongtang polysaccharide group and Shenling Baizhusan polysaccharide group were concentrated in the transport and transmembrane transport of dicarboxylic acid. The Shenling Baizhusan polysaccharide and BHI Broth groups showed high expression of PUL 4 and 27, glycoside hydrolase 13 (GH13), and glycosyl transferases 5 (GT5). PUL9 was highly expressed in Shenling Baizhusan polysaccharide group, and PUL 17, 19, and 20, GH3, and GH144 in the BHI Broth group. PUL27 and GT5 were highly expressed in Shenling Baizhusan polysaccharide and glucose groups. PUL 4 and 9 and GH13 were only highly expressed in Shenling Baizhusan polysaccharide group, and PUL 2, 17, and 19 and GH2 in the glucose group. Both Lizhongtang polysaccharide group and BHI group highly expressed PUL 4, 17, 19, 20, and 27, GH3, and GH144. PUL 2, 8, 23, and 27, GH2, and GH57 were highly expressed in Lizhongtang polysaccharide group, while GH13 showed high expression in the BHI group. Both the glucose and Lizhongtang polysacharride groups showed high expression of PUL 4 and 27 and GH2. PUL 4, 8, 20, and 23, GH3, and GH144 were highly expressed in Lizhongtang polysaccharide group, while PUL30 was highly expressed in the glucose group.
Conclusion
2
The
in vitro
experiments and transcriptome sequencing results confirmed that the expression of PULs and GH may provide benefits or costs to the adaptive growth of
Bacteroides fragilis
ATCC25285 cultured with different carbon sources, which may be one of the mechanisms by which polysaccharides from Chinese medicine compound prescriptions regulate the growth of
B. fragilis
ATCC25285. The findings can provide a reference for further research on the relationship between
B. fragilis
metabolic pathway and polysaccharides of Chinese medicine compound prescriptions.
理中汤参苓白术散碳源脆弱拟杆菌转录组多糖利用位点
LizhongtangShenling Baizhusancarbon sourceBacteroides fragilis ATCC25285transcriptomepolysaccharide utilization loci
章从恩,陈熹,张学强,等.理中汤改善抗生素相关性腹泻及对肠道菌群的干预作用研究[J].中国医院用药评价与分析,2022,22(5):513-519,526.
张文嫦,王志华,练家乐,等.仔鼠哺乳期补充参苓白术散改善抗生素诱导的肠道稳态失衡[J].畜牧兽医学报,2023,54(2):825-836.
HUANG Y C,TSAY H J,LU M K,et al.Astragalus membranaceus-polysaccharides ameliorates obesity,hepatic steatosis,neuroinflammation and cognition impairment without affecting amyloid deposition in metabolically stressed APPswe/PS1dE9 mice[J].Int J Mol Sci,2017,18(12):2746.
何旭云,贺姣姣,郑宁宁,等.黄芪多糖对肥胖小鼠的减肥作用与调节肠道菌群的关系研究[J].世界中医药,2016,11(11):2379-2384,2388.
FAN W T,ZHENG P M,WANG Y,et al.Analysis of immunostimulatory activity of polysaccharide extracted from Yu-Ping-Feng in vitro and in vivo[J].Biomed Pharmacother,2017,93:146-155.
吴秀,周联,罗霞,等.四君子汤多糖对脾虚小鼠肠道菌群及免疫功能的影响[J].中药药理与临床,2014,30(2):12-14.
MARTENS E C,KOROPATKIN N M,SMITH T J,et al.Complex glycan catabolism by the human gut microbiota:The Bacteroidetes Sus-like paradigm[J].J Biol Chem,2009,284(37):24673-24677.
TROY E B,KASPER D L.Beneficial effects of Bacteroides fragilis polysaccharides on the immune system[J].Front Biosci,2010,15:25-34.
MACKENZIE A K,POPE P B,PEDERSEN H L,et al.Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant Bacteroidetes phylotype bind strongly to cellulose[J].Appl Environ Microbiol,2012,78(16):5935-5937.
CAO Y L,FORSTNER K U,VOGEL J,et al.cis-Encoded small RNAs,a conserved mechanism for repression of polysaccharide utilization in bacteroides[J].J Bacteriol,2016,198(18):2410-2418.
辜沅.基于PULs研究两个中药复方多糖竞争性调节拟杆菌生长的分子机制[D].南昌:江西中医药大学,2020.
XU X F,XU P P,MA C W,et al.Gut microbiota,host health,and polysaccharides[J].Biotechnol Adv,2013,31(2):318-337.
ZHUANG Q,YE X,SHEN S,et al.Astragalus polysaccharides ameliorate diet-induced gallstone formation by modulating synthesis of bile acids and the gut microbiota[J].Front Pharmacol,2021,12:701003.
DONG N,LI X R,XUE C Y,et al.Astragalus polysaccharides attenuated inflammation and balanced the gut microflora in mice challenged with Salmonella typhimurium[J].Int Immunopharmacol,2019,74:105681.
ZAFAR H,SAIER M H.Gut Bacteroides species in health and disease[J].Gut Microbes,2021,13(1):1-20.
GRONDIN J M,TAMURA K,DEJEAN G,et al.Polysaccharide utilization loci:Fueling microbial communities[J].J Bacteriol,2017,199(15):e00860-16.
曾艳华,陈玛宁,张宁,等.大蒜多糖对人体肠道中拟杆菌生长的影响[J].现代食品科技,2010,26(5):445-447,489.
张勇.益生菌Lactobacillus casei Zhang对大鼠糖耐量受损改善作用和Ⅱ型糖尿病预防作用[D].呼和浩特:内蒙古农业大学,2013.
ZAHRA S M T,ARFA M,MARVASTI F E,et al.The effect of saturated and unsaturated fatty acids on the production of outer membrane vesicles from Bacteroides fragilis and Bacteroides thetaiotaomicron[J].Gastroenterol Hepatol Bed Bench,2019,12(2):155-162.
MHAMDI A,BREUSEGEM F V,NOCTOR G.Measurement of NAD(P)H and NADPH-generating enzymes[J].Methods Mol Biol,2022,2526:97-106.
SCHWALM N D,GROISMAN E A.Navigating the gut buffet:Control of polysaccharide utilization in Bacteroides spp[J].Trends Microbiol,2017,25(12):1005-1015.
辜沅,舒青龙.多糖利用位点研究进展及其在中药药理研究中的应用[J].中国实验方剂学杂志,2019,25(16):193-200.
BUSCHIAZZO A,UGALDE J E,GUERIN M E,et al.Crystal structure of glycogen synthase:Homologous enzymes catalyze glycogen synthesis and degradation[J].EMBO J,2004,23(16):3196-3205.
MOULIS C,ANDRE I,MAGALI R S.GH13 amylosucrases and GH70 branching sucrases,atypical enzymes in their respective families[J].Cell Mol Life Sci,2016,73(14):2661-2679.
COURNOYER B,FAURE D.Radiation and functional specialization of the family-3 glycoside hydrolases[J].J Mol Microbiol Biotechnol,2003,5(3):190-198.
KARKEHABADI S,HANSSON H,MIKKELSEN N E,et al.Structural studies of a glycoside hydrolase family 3 β-glucosidase from the model fungus Neurospora crassa[J].Acta Crystallogr F Struct Biol Commun,2018,74:787-796.
ABE K,NAKAJIMA M,YAMASHITA T,et al.Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family[J].J Biol Chem,2017,292(18):7487-7506.
DOMINGUES M N,SOUZA F H M,VIEIRA P S,et al.Structural basis of exo-β-mannanase activity in the GH2 family[J].J Biol Chem,2018,293(35):13636-13649.
LIANG D,GONG L,YAO B,et al.Implication of a galactomannan-binding GH2 β-mannosidase in mannan utilization by Caldicellulosiruptor bescii[J].Biochem Biophys Res Commun,2015,467(2):334-340.
LIU M Z,YU J,LV B,et al.Improving the activity and thermostability of GH2 β-glucuronidases via domain reassembly[J].Biotechnol Bioeng,2021,118(5):1962-1972.
BLESAK K,JANECEK S.Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57[J].Extremophiles,2012,16(3):497-506.
JANECEK J Š,SVENSSON B,MACGREGOR E A.α-Amylase:An enzyme specificity found in various families of glycoside hydrolases[J].Cell Mol Life Sci,2014,71(7):1149-1170.
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构