1.广西中医药大学 研究生院,南宁 530200
2.广西中医药大学 第一附属医院,南宁 530000
3.广西中医药大学 附属国际壮医医院,南宁 530219
4.湖南中医药大学 研究生院,长沙 410208
莫超,博士,主治医师,从事中西医结合防治肾脏病研究,E-mail:mochao19890321@163.com
黄国东,博士,教授,主任医师,博士生导师,从事中西医结合防治肾脏病研究,E-mail:huangnong.2007@163.com
收稿:2022-10-21,
网络出版:2023-02-16,
纸质出版:2024-02-05
移动端阅览
莫超,黄国东,史伟等.基于中医阴阳理论探讨肠道微生态对糖尿病肾脏病的影响[J].中国实验方剂学杂志,2024,30(03):178-186.
MO Chao,HUANG Guodong,SHI Wei,et al.Effect of Intestinal Microecology on Diabetic Kidney Disease Based on Yin-Yang Theory[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(03):178-186.
莫超,黄国东,史伟等.基于中医阴阳理论探讨肠道微生态对糖尿病肾脏病的影响[J].中国实验方剂学杂志,2024,30(03):178-186. DOI: 10.13422/j.cnki.syfjx.20230827.
MO Chao,HUANG Guodong,SHI Wei,et al.Effect of Intestinal Microecology on Diabetic Kidney Disease Based on Yin-Yang Theory[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(03):178-186. DOI: 10.13422/j.cnki.syfjx.20230827.
糖尿病肾脏病是导致终末期肾脏病的主要原因,具有患病率高、死亡率高、医疗费用高等特点,给社会、家庭带来沉重的经济负担,已成为全球当前严重的公共卫生问题之一。肠道微生态是人体最主要的、最复杂的微生态系统,参与人体物质能量代谢、免疫系统调节、信号传导等重要生命活动,进而维持人体内环境动态平衡。肠道微生态之间及其与机体之间的动态平衡本质上是阴阳平衡。一旦阴阳平衡关系被打破,则出现肠道菌群失调、肠道黏膜屏障受损、免疫功能异常、代谢物短链脂肪酸减少等,他们在糖尿病肾脏病的发生进展中扮演着重要角色。在中医阴阳理论视域下,糖尿病肾脏病的肠道微生态失衡犹如中医阴阳制约太过,或制约不及,或阴损及阳,或阳损及阴,或阴消,或阳消。针对不同的病机变化,采取“阴病治阳”或“阳中求阴”或“阴中求阳”等方法,通过中医药调节肠道菌群、抑制免疫炎症反应、保护肠道黏膜屏障、提高短链脂肪酸含量,以调整阴阳,达到“阴平阳秘”状态。该文拟基于中医阴阳理论,以肠道微生态为靶标,以中医药调控肠道微生态干预糖尿病肾脏病为切入点,阐释中医药干预糖尿病肾脏病的科学内涵,以期为揭示糖尿病肾脏病的发生发展规律和中医药的效应机制提供了全新的视角。
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease. Its high prevalence, mortality rate, and medical cost bring a heavy economic burden to society and families, and DKD has become one of the most important public health problems. Intestinal microecology is the most important and complex micro-ecosystem in the human body, which is involved in important life activities such as material and energy metabolism, immune system regulation, and signal transduction, thereby maintaining the dynamic balance of the human internal environment. The dynamic balance between the intestinal microecology and the body is essentially a Yin-Yang balance. Once this balance is broken, intestinal microbiota imbalance, intestinal mucosal barrier damage, immune dysfunction, and reduction of metabolite short-chain fatty acids (SCFAs) will occur, which play an important role in the progression of DKD. From the perspective of the Yin-Yang theory of traditional Chinese medicine (TCM), the imbalance of intestinal microecology in DKD is equivalent to the excessive or insufficient constraint of Yin and Yang, or Yin deficiency affecting Yang, or Yang deficiency affecting Yin, or waning and waxing of Yin and Yang. For different pathogenesis changes, "Yin disease treated through Yang", "treating Yin for Yang", or "treating Yang for Yin" methods are adopted to regulate intestinal microbiota, inhibit immune inflammation, protect intestinal mucosal barrier, and increase SCFAs through TCM, thereby reconciling Yin and Yang to achieve the condition where "Yin is at peace and Yang is compact". Based on the Yin-Yang theory, this paper intended to interpret the scientific connotation of TCM in the treatment of DKD with intestinal microecology as the target and TCM in the treatment of DKD by regulating intestinal microecology as the breakthrough point to provide a novel insight for the occurrence and development of DKD and the mechanism of TCM.
SELBY N M , TAAL M W . An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines [J]. Diabetes Obes Metab , 2020 , 22 ( Suppl 1 ): 3 - 15 .
FEDERATION I D . International Diabetes Federation Diabetes Atlas, 10 th edn [EB/OL]. [ 2022-10-21 ]. https://www.diabetesatlas.org https://www.diabetesatlas.org .
WU H , EGGLESTON K N , ZHONG J , et al . How do type 2 diabetes mellitus (T2DM)-related complications and socioeconomic factors impact direct medical costs? A cross-sectional study in rural Southeast China [J]. BMJ Open , 2018 , 8 ( 11 ): e020647 .
DE ZEEUW D , HEERSPINK H J L . Unmet need in diabetic nephropathy: Failed drugs or trials? [J]. Lancet Diabetes Endocrinol , 2016 , 4 ( 8 ): 638 - 640 .
LIN S , WANG Z , LAM K L , et al . Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites [J]. Food Nutr Res , 2019 , 14 ( 63 ): 1518 - 1529 .
LU Y , LIANG X , WU Y , et al . Bifidobacterium animalis sup F1-7 acts as an effective activator to regulate immune response via Caspase-3 and Bak of FAS/CD95 pathway [J]. Probiotics Antimicrob Proteins , 2022 , doi: 10.1007/s12602-022-09975-9 http://dx.doi.org/10.1007/s12602-022-09975-9 .
LIN J R , WANG Z T , SUN J J , et al . Gut microbiota and diabetic kidney diseases: Pathogenesis and therapeutic perspectives [J]. World J Diabetes , 2022 , 13 ( 4 ): 308 - 318 .
FANG Q , LIU N , ZHENG B , et al . Roles of gut microbial metabolites in diabetic kidney disease [J]. Front Endocrinol (Lausanne) , 2021 , doi: 10.3389/fendo.2021.636175 http://dx.doi.org/10.3389/fendo.2021.636175 .
杨化冰 , 邹小娟 , 孔明望 , 等 . 肠道微生态与传统中医思想内涵 [J]. 中医杂志 , 2017 , 58 ( 12 ): 1070 - 1072 .
邵晓姣 , 成泽东 . 从中医阴阳五行理论谈肠道菌群 [J]. 辽宁中医药大学学报 , 2013 , 15 ( 7 ): 136 - 137 .
张宇鹏 . 中医阴阳学说探析 [J]. 中国中医基础医学杂志 , 2022 , 28 ( 1 ): 9 - 12 .
章增加 . 试论“阴阳两盛”病机 [J]. 中医杂志 , 2009 , 50 ( 10 ): 939 - 941 .
LUCKEY T D . Introduction to intestinal microecology [J]. Am J Clin Nutr , 1972 , 25 ( 12 ): 1292 - 1294 .
SUN T , XUE M , YANG J , et al . Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases [J]. J Sci Food Agric , 2021 , 101 ( 11 ): 4456 - 4463 .
BENECH N , SOKOL H . Specific gut microbiota taxa as a key source of variability in colitis model [J]. Nat Rev Gastroenterol Hepatol , 2022 , 19 ( 8 ): 491 - 492 .
YANG G , WEI J , LIU P , et al . Role of the gut microbiota in type 2 diabetes and related diseases [J]. Metabolism , 2021 , doi: 10.1016/j.metabol.2021.154712 http://dx.doi.org/10.1016/j.metabol.2021.154712 .
MIYAUCHI E , SHIMOKAWA C , STEIMLE A , et al . The impact of the gut microbiome on extra-intestinal autoimmune diseases [J]. Nat Rev Immunol , 2022 . doi: 10.1038/s41577-022-00727-y http://dx.doi.org/10.1038/s41577-022-00727-y .
MAYNERIS-PERXACHS J , CASTELLS-NOBAU A , ARNORIAGA-RODRíGUEZ M , et al . Microbiota alterations in proline metabolism impact depression [J]. Cell Metab , 2022 , 34 ( 5 ): 681 - 701.e610 .
PARK E M , CHELVANAMBI M , BHUTIANI N , et al . Targeting the gut and tumor microbiota in cancer [J]. Nat Med , 2022 , 28 ( 4 ): 690 - 703 .
HUGON P , DUFOUR J C , COLSON P , et al . A comprehensive repertoire of prokaryotic species identified in human beings [J]. Lancet Infect Dis , 2015 , 15 ( 10 ): 1211 - 1219 .
CHEN Y Y , CHEN D Q , CHEN L , et al . Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease [J]. J Transl Med , 2019 , 17 ( 1 ): 5 .
RAYNER C K , HOROWITZ M . Agonism of receptors in the gut-pancreas axis in type 2 diabetes: Are two better than one? [J]. Lancet , 2018 , 391 ( 10140 ): 2577 - 2578 .
WANG Z , WANG Z , LU T , et al . The microbiota-gut-brain axis in sleep disorders [J]. Sleep Med Rev , 2022 , doi: 10.1016/j.smrv.2022.101691 http://dx.doi.org/10.1016/j.smrv.2022.101691 .
SILVEIRA M A D , BILODEAU S , GRETEN T F , et al . The gut-liver axis: Host microbiota interactions shape hepatocarcinogenesis [J]. Trends Cancer , 2022 , 8 ( 7 ): 583 - 597 .
VAZIRI N D , ZHAO Y Y , PAHL M V . Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment [J]. Nephrol Dial Transplant , 2016 , 31 ( 5 ): 737 - 746 .
BREUGELMANS T , OOSTERLINCK B , ARRAS W , et al . The role of mucins in gastrointestinal barrier function during health and disease [J]. Lancet Gastroenterol Hepatol , 2022 , 7 ( 5 ): 455 - 471 .
DOE W F . The intestinal immune system [J]. Gut , 1989 , 30 ( 12 ): 1679 - 1685 .
LV Q , LI Z , SUI A , et al . The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases [J]. Front Microbiol , 2022 , doi: 10.3389/fmicb.2022.977187 http://dx.doi.org/10.3389/fmicb.2022.977187 .
WANG Y , ZHAO J , QIN Y , et al . The specific alteration of gut microbiota in diabetic kidney diseases-A systematic review and Meta-analysis [J]. Front Immunol , 2022 , doi: 10.3389/fimmu.2022.908219 http://dx.doi.org/10.3389/fimmu.2022.908219 .
TAO S , LI L , LI L , et al . Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition [J]. Acta Diabetol , 2019 , 56 ( 5 ): 581 - 592 .
ZHANG L , WANG Z , ZHANG X , et al . Alterations of the Gut microbiota in patients with diabetic nephropathy [J]. Microbiol Spectr , 2022 , 10 ( 4 ): e0032422 .
YUAN J H , XIE Q S , CHEN G C , et al . Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, Zonulin, and IFABP [J]. J Diabetes Complications , 2021 , 35 ( 2 ): 107766 .
SALGUERO M V , AL-OBAIDE M A I , SINGH R , et al . Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease [J]. Exp Ther Med , 2019 , 18 ( 5 ): 3461 - 3469 .
GROSHEVA I , ZHENG D , LEVY M , et al . High-throughput screen identifies host and microbiota regulators of intestinal barrier function [J]. Gastroenterology , 2020 , 159 ( 5 ): 1807 - 1823 .
STEPHENS M , VON DER WEID P Y . Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner [J]. Gut Microbes , 2020 , 11 ( 3 ): 421 - 432 .
NYMARK M , PUSSINEN P J , TUOMAINEN A M , et al . Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes [J]. Diabetes Care , 2009 , 32 ( 9 ): 1689 - 1693 .
GUITERAS R , SOLA A , FLAQUER M , et al . Exploring macrophage cell therapy on diabetic kidney disease [J]. J Cell Mol Med , 2019 , 23 ( 2 ): 841 - 851 .
DAVIS T M E , PETERS K E , LIPSCOMBE R . Apoptosis inhibitor of macrophage and diabetic kidney disease [J]. Cell Mol Immunol , 2019 , 16 ( 5 ): 521 .
LUO L , LUCAS R M , LIU L , et al . Signalling, sorting and scaffolding adaptors for Toll-like receptors [J]. J Cell Sci , 2019 , 133 ( 5 ): jcs239194 .
HSIEH W Y , ZHOU Q D , YORK A G , et al . Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome [J]. Cell Metab , 2020 , 32 ( 1 ): 128 - 143.e125 .
PANCHAPAKESAN U , POLLOCK C . The role of toll-like receptors in diabetic kidney disease [J]. Curr Opin Nephrol Hypertens , 2018 , 27 ( 1 ): 30 - 34 .
WANG J , CHEN W D , WANG Y D . The relationship between gut microbiota and inflammatory diseases: The role of macrophages [J]. Front Microbiol , 2020 , doi: 10.3389/fmicb.2020.01065 http://dx.doi.org/10.3389/fmicb.2020.01065 .
KONG L , ANDRIKOPOULOS S , MACISAAC R J , et al . Role of the adaptive immune system in diabetic kidney disease [J]. J Diabetes Investig , 2022 , 13 ( 2 ): 213 - 226 .
CHEN J , LIU Q , HE J , et al . Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target [J]. Front Immunol , 2022 , doi: 10.3389/fimmu.2022.958790 http://dx.doi.org/10.3389/fimmu.2022.958790 .
XIONG R G , ZHOU D D , WU S X , et al . Health benefits and side effects of short-chain fatty acids [J]. Foods , 2022 , 11 ( 18 ): 2863 .
ELLER K , KIRSCH A , WOLF A M , et al . Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy [J]. Diabetes , 2011 , 60 ( 11 ): 2954 - 2962 .
HU M , ALASHKAR ALHAMWE B , SANTNER-NANAN B , et al . Short-chain fatty acids augment differentiation and function of human induced regulatory T cells [J]. Int J Mol Sci , 2022 , 23 ( 10 ): 5740 .
LI Y J , CHEN X , KWAN T K , et al . Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A [J]. J Am Soc Nephrol , 2020 , 31 ( 6 ): 1267 - 1281 .
MO Q , LIU T , FU A , et al . Novel Gut microbiota patterns involved in the attenuation of dextran sodium sulfate-induced mouse colitis mediated by glycerol monolaurate via inducing anti-inflammatory responses [J]. mBio , 2021 , 12 ( 5 ): e0214821 .
魏曦 . 微生态学刍议 [J]. 中国微生态学杂志 , 1989 ( 1 ): 4 - 5 .
裴明 , 杨洪涛 . 从肠道微生态看中医肾病学的发展机遇 [J]. 中华中医药杂志 , 2019 , 34 ( 6 ): 2336 - 2341 .
黄凯舟 , 蒋开平 , 李建鸿 , 等 . 基于肠道微生态与脾胃升降关系探讨非酒精性脂肪性肝病的组方用药思路 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 3 ): 43 - 52 .
李玉丽 , 刘娅薇 , 谭周进 . 基于肠道菌群功能探究泄泻肠道湿热证和泄泻寒湿困脾证的“同病异治” [J]. 中国实验方剂学杂志 , 2022 , 28 ( 16 ): 140 - 149 .
柳红芳 , 张向伟 , 张先慧 . 糖尿病肾病的审因论治 [J]. 中医杂志 , 2016 , 57 ( 19 ): 1646 - 1648 .
ADAK A , KHAN M R . An insight into gut microbiota and its functionalities [J]. Cell Mol Life Sci , 2019 , 76 ( 3 ): 473 - 493 .
刘峰 , 严晶 , 卢冬雪 . 肠道微生态研究与中医本质探索 [J]. 中医学报 , 2019 , 34 ( 9 ): 1859 - 1863 .
MOSTERD C M , KANBAY M , VAN DEN BORN B J H , et al . Intestinal microbiota and diabetic kidney diseases: The role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression [J]. Best Pract Res Clin Endocrinol Metab , 2021 , 35 ( 3 ): 101484 .
朱潇旭 , 杨芙蓉 , 鄢黎 , 等 . 从中医阴阳理论探讨小胶质细胞活化现象对抑郁症的影响 [J]. 中华中医药杂志 , 2021 , 36 ( 10 ): 5758 - 5762 .
MANDALIYA D K , SESHADRI S . Short chain fatty acids, pancreatic dysfunction and type 2 diabetes [J]. Pancreatology , 2019 , 19 ( 2 ): 280 - 284 .
ZHONG C , DAI Z , CHAI L , et al . The change of gut microbiota-derived short-chain fatty acids in diabetic kidney disease [J]. J Clin Lab Anal , 2021 , 35 ( 12 ): e24062 .
HUANG W , MAN Y , GAO C , et al . Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF- κ B signaling [J]. Oxid Med Cell Longev , 2020 , doi: 10.1155/2020/4074832 http://dx.doi.org/10.1155/2020/4074832 .
黄文武 , 彭颖 , 王梦月 , 等 . 四君子汤及其单味药水煎液对脾虚大鼠肠道菌群的调节作用 [J]. 中国实验方剂学杂志 , 2019 , 25 ( 11 ): 8 - 15 .
刘卫红 . 微生物自溶现象在中医微生态学研究中的意义 [J]. 山东中医药大学学报 , 1998 , 22 ( 5 ): 9 .
O'TOOLE P W , JEFFERY I B . Gut microbiota and aging [J]. Science , 2015 , 350 ( 6265 ): 1214 - 1215 .
尹佳婷 , 杨淑惠 , 李成曦 , 等 . 黄芪对自然衰老小鼠肠道功能及菌群稳态的作用研究 [J]. 药学学报 , 2022 , doi: 10.16438/j.0513-4870.2021-1459 http://dx.doi.org/10.16438/j.0513-4870.2021-1459 .
CHEN R , ZHU D , YANG R , et al . Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease [J]. Ann Transl Med , 2022 , 10 ( 13 ): 750 .
蔡红蝶 , 宿树兰 , 郭建明 , 等 . 丹参对糖尿病肾损伤大鼠肠道菌群多样性的影响 [J]. 中国中药杂志 , 2021 , 46 ( 2 ): 426 - 435 .
ZHOU Q , YANG F , LI Z , et al . Paecilomyces cicadae-fermented Radix astragali ameliorate diabetic nephropathy in mice by modulating the gut microbiota [J]. J Med Microbiol , 2022 , doi: 10.1099/jmm.0.001535 http://dx.doi.org/10.1099/jmm.0.001535 .
YANG J , DONG H , WANG Y , et al . Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis [J]. Int J Biol Macromol , 2020 , 163 : 442 - 456 .
戴新新 , 蔡红蝶 , 宿树兰 , 等 . 地黄叶对糖尿病肾病大鼠肠道菌群的调节作用 [J]. 药学学报 , 2017 , 52 ( 11 ): 1683 - 1691 .
XU Z , DAI X X , ZHANG Q Y , et al . Protective effects and mechanisms of Rehmannia glutinosa leaves total glycoside on early kidney injury in db/db mice [J]. Biomed Pharmacother , 2020 , doi: 10.1016/j.biopha.2020.109926 http://dx.doi.org/10.1016/j.biopha.2020.109926 .
张文杰 , 赖星海 , 陈佳薇 . 山药多糖治疗肥胖糖尿病肾病大鼠的效果观察及对其肾功能和肠道微生态的影响 [J]. 中国微生态学杂志 , 2021 , 33 ( 1 ): 37 - 42 .
LI X W , CHEN H P , HE Y Y , et al . Effects of rich-polyphenols extract of Dendrobium loddigesii on anti-diabetic, anti-inflammatory, anti-oxidant, and Gut microbiota modulation in db/db mice [J]. Molecules , 2018 , 23 ( 12 ): 3245 .
杜小梅 , 潘薇 , 梁颖兰 , 等 . 参芪地黄汤加减治疗气阴两虚型糖尿病肾病疗效观察及对肠道菌群和炎症因子的影响 [J]. 中药新药与临床药理 , 2021 , 32 ( 4 ): 566 - 572 .
LIU J , GAO L D , FU B , et al . Efficacy and safety of Zicuiyin decoction on diabetic kidney disease: A multicenter, randomized controlled trial [J]. Phytomedicine , 2022 , doi: 10.1016/j.phymed.2022.154079 http://dx.doi.org/10.1016/j.phymed.2022.154079 .
冯程程 , 藏登 , 陈茜 , 等 . 糖肾灌肠方经肠道干预糖尿病肾病小鼠模型的肠道菌群研究 [J]. 实用中医内科杂志 , 2022 , 36 ( 4 ): 75-79, 148 - 151 .
SU X , YU W , LIU A , et al . San-Huang-Yi-Shen capsule ameliorates diabetic nephropathy in rats through modulating the gut microbiota and overall metabolism [J]. Front Pharmacol , 2021 , doi: 10.3389/fphar.2021.808867 http://dx.doi.org/10.3389/fphar.2021.808867 .
CHEN Q , REN D , WU J , et al . Shenyan Kangfu tablet alleviates diabetic kidney disease through attenuating inflammation and modulating the gut microbiota [J]. J Nat Med , 2021 , 75 ( 1 ): 84 - 98 .
ZHANG M , YANG L , ZHU M , et al . Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats [J]. Int J Biol Macromol , 2022 , doi: 10.1016/j.ijbiomac.2022.03.077 http://dx.doi.org/10.1016/j.ijbiomac.2022.03.077 .
CAI T T , YE X L , LI R R , et al . Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice [J]. Front Pharmacol , 2020 , doi: 10.3389/fphar.2020.01249 http://dx.doi.org/10.3389/fphar.2020.01249 .
FENG Y , WENG H , LING L , et al . Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice [J]. Int J Biol Macromol , 2019 , 132 : 1001 - 1011 .
ZHAO T , ZHANG H , YIN X , et al . Tangshen formula modulates gut microbiota and reduces gut-derived toxins in diabetic nephropathy rats [J]. Biomed Pharmacother , 2020 , doi: 10.1016/j.biopha.2020.110325 http://dx.doi.org/10.1016/j.biopha.2020.110325 .
GAO Y , YANG R , GUO L , et al . Qing-Re-Xiao-Zheng formula modulates gut microbiota and inhibits inflammation in mice with diabetic kidney disease [J]. Front Med (Lausanne) , 2021 , doi: 10.3389/fmed.2021.719950 http://dx.doi.org/10.3389/fmed.2021.719950 .
徐卓 , 项想 , 尚尔鑫 , 等 . 丹参茎叶总酚酸对2型糖尿病肾病小鼠肠道菌群和短链脂肪酸的调节作用 [J]. 药学学报 , 2021 , 56 ( 4 ): 1035 - 1048 .
WEI H , WANG L , AN Z , et al . Qiditangshen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy [J]. Biomed Pharmacother , 2021 , doi: 10.1016/j.biopha.2020.111061 http://dx.doi.org/10.1016/j.biopha.2020.111061 .
0
浏览量
144
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
