浏览全部资源
扫码关注微信
1.北京中医药大学 中药学院,北京 102488
2.中国食品药品检定研究院,北京 100050
张慧中,硕士,从事中药新剂型与新技术的研究,E-mail: zhz0131sherry@163.com
王莹,博士,副研究员,从事中药质量控制及安全检测研究,E-mail: wayi_1986@163. com;
董晓旭,博士,副教授,从事中药新剂型与新技术的研究,E-mail: dxiaoxv@163.com
纸质出版日期:2024-09-05,
网络出版日期:2024-02-19,
收稿日期:2023-11-16,
扫 描 看 全 文
张慧中,倪健,彭胡麟玥等.重楼皂苷Ⅱ诱导肝癌HepG2细胞铁死亡作用机制[J].中国实验方剂学杂志,2024,30(17):105-112.
ZHANG Huizhong,NI Jian,PENG Hulinyue,et al.Mechanism of Polyphyllin Ⅱ in Induction of Ferroptosis in Hepatocellular Carcinoma HepG2 Cells[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(17):105-112.
张慧中,倪健,彭胡麟玥等.重楼皂苷Ⅱ诱导肝癌HepG2细胞铁死亡作用机制[J].中国实验方剂学杂志,2024,30(17):105-112. DOI: 10.13422/j.cnki.syfjx.20240629.
ZHANG Huizhong,NI Jian,PENG Hulinyue,et al.Mechanism of Polyphyllin Ⅱ in Induction of Ferroptosis in Hepatocellular Carcinoma HepG2 Cells[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(17):105-112. DOI: 10.13422/j.cnki.syfjx.20240629.
目的
2
探讨重楼皂苷Ⅱ(PPⅡ)诱导肝癌HepG2细胞发生铁死亡作用及其机制。
方法
2
采用噻唑蓝(MTT)比色法检测PPⅡ(0、1.5、3.0、4.5、6.0、9.0、18.0 mg·L
-1
)对HepG2细胞体外增殖能力的影响;平板克隆实验检测HepG2细胞克隆形成能力;划痕实验检测HepG2细胞迁移能力;利用试剂盒检测HepG2细胞中乳酸脱氢酶(LDH)的含量;借助荧光倒置显微镜观察HepG2细胞的活性氧(ROS)水平;利用试剂盒检测HepG2细
胞中丙二醛(MDA)、谷胱甘肽(GSH)和游离Fe
2+
的含量;利用透射电镜观察HepG2细胞的线粒体超微结构;采用蛋白免疫印迹法(Western blot)检测HepG2细胞中铁死亡相关蛋白p53、溶质载体家族7成员11(SLC7A11)、谷胱甘肽过氧化物酶4(GPX4)、长链脂酰辅酶A合成酶4(ACSL4)及转铁蛋白受体1(TFR1)表达的情况。
结果
2
与空白组比较,PPⅡ组HepG2细胞存活率显著下降,并呈浓度依赖性(
P
<
0.01),细胞克隆数显著减少(
P
<
0.01),划痕愈合距离明显缩短,迁移距离和药物浓度呈反比(
P
<
0.01),细胞LDH的泄漏显著增多(
P
<
0.01),细胞内ROS相对荧光强度显著增强,细胞内脂质过氧化物MDA积累量显著增多(
P
<
0.01),细胞内GSH含量随着药物浓度的增大而显著减少(
P
<
0.01),细胞FeRhoNox-1荧光强度显著增强(
P
<
0.01),细胞出现空泡,线粒体明显皱缩,线粒体嵴减少甚至消失。与空白组比较,PPⅡ组细胞中p53、ACSL4、TFR1蛋白表达明显上调,SLC7A11、GPX4蛋白表达明显下调(
P
<
0.05)。
结论
2
综上,PPⅡ通过调控p53/SLC7A11/GPX4信号通路轴,促进ACSL4表达和细胞摄取Fe
3+
,使抗氧化系统失衡,诱导HepG-2细胞铁死亡。
Objective
2
To investigate the induction of ferroptosis by polyphyllin Ⅱ (PPⅡ) in hepatocellular carcinoma HepG2 cells and its underlying mechanism.
Method
2
The effect of PPⅡ (0, 1.5, 3.0, 4.5, 6.0, 9.0, 18.0 mg·L
-1
) on the
in vitro
proliferation of HepG2 cells was assessed using the methyl thiazolyl tetrazolium (MTT) assay. Colony formation ability of HepG2 cells was evaluated through a colony formation assay. Cell migration ability was assessed via a scratch assay. Lactate dehydrogenase (LDH) content in HepG2 cells was measured using a kit. Reactive oxygen species (ROS) levels in HepG2 cells were observed using a fluorescence inverted microscope. Malondialdehyde (MDA), glutathione (GSH), and free Fe
2+
content in HepG2 cells were detected using respective kits. The mitochondrial ultrastructure in HepG2 cells was observed by transmission electron microscopy. The expression of ferroptosis-related proteins p53, solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), and transferrin receptor 1
(TFR1) in HepG2 cells was detected using Western blot.
Result
2
Compared with the control group, the PPⅡ treatment groups showed significantly decreased survival rate of HepG2 cells in a dose-dependent manner (
P
<
0.01), significantly reduced number of cell colonies (
P
<
0.01), significantly shortened scratch healing distance, inverse correlation of the migration distance with drug concentration (
P
<
0.01), significantly increased LDH leakage in cells (
P
<
0.01), significantly enhanced relative fluorescence intensity of intracellular ROS, and significantly increased accumulation of lipid peroxide MDA (
P<
0.01), decreased intracellular GSH content with increasing drug concentration (
P<
0.01), and significantly enhanced fluorescence intensity of FeRhoNox-1 in cells (
P<
0.01). Moreover, cells exhibited vacuolation, and mitochondria showed significant shrinkage with reduced or even disappeared cristae. Compared with the results in the control group, the expression of p53, ACSL4, and TFR1 proteins significantly increased, while the expression of SLC7A11 and GPX4 proteins significantly decreased in the PPⅡ treatment groups (
P<
0.05).
Conclusion
2
In summary, PPⅡ induces ferroptosis in HepG2 cells by regulating the p53/SLC7A11/GPX4 signaling axis, promoting ACSL4 expression and Fe
3+
uptake, leading to an imbalance in the antioxidant system.
肝癌重楼皂苷Ⅱ铁死亡p53机制
hepatocarcinoma carcinomapolyphyllin Ⅱferroptosisp53mechanism
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版) [J]. 临床肝胆病杂志, 2022, 38(2): 288-303.
RINALDI L, VETRANO E, RINALDI B, et al. HCC and molecular targeting therapies: Back to the future[J]. Biomedicines,2021,9(10):1345.
KIM D W, TALATI C, KIM R. Hepatocellular carcinoma (HCC): beyond sorafenib-chemotherapy[J]. J Gastrointest Oncol,2017,8(2):256-265.
STOCKWELL B R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell,2022,185(14):2401-2421.
JIANG X, STOCKWELL B R, CONRAD M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol,2021,22(4):266-282.
程洁, 陆军, 王章桂. 铁死亡在肿瘤治疗中的研究进展 [J]. 中华肿瘤防治杂志, 2020, 27(19): 1598-604.
张慧中,张艺博,付京,等.中药活性成分诱导肿瘤细胞铁死亡的研究进展[J].中国实验方剂学杂志,2024,30(9):245-253.
LIU Y, GU W. p53 in ferroptosis regulation: The new weapon for the old guardian[J]. Cell Death Differ, 2022,29(5):895-910.
WANG Y, DENG B. Hepatocellular carcinoma: Molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023,42(3):629-652.
ZHANG X, DU L, QIAO Y, et al. Ferroptosis is governed by differential regulation of transcription in liver cancer[J]. Redox Biol,2019,24:101211.
国家药典委员会. 中华人民共和国药典:一部 [M]. 北京: 中国医药科技出版社, 2020:271-272.
谈文状,陈军,泰瑞清,等.滇重楼的抗肿瘤活性成分研究[J].云南中医中药杂志,2015,36(6):91-95.
张艺博,张慧中,付京,等.重楼总皂苷的现代研究进展与展望[J].中国实验方剂学杂志,2024,30(1):232-243.
王开心,蔡梦如,尹东阁,等.重楼皂苷Ⅰ的现代研究进展[J].中国实验方剂学杂志,2023,29(22):254-264.
黄华婷,彭胡麟玥,刘曼婷,等.重楼皂苷Ⅱ的药理作用、药代动力学及不良反应研究进展[J].中国实验方剂学杂志,2023,29(8):257-265.
ZHANG L, MAN S, WANG Y, et al. Paris Saponin Ⅱ induced apoptosis via activation of autophagy in human lung cancer cells[J]. Chem Biol Interact,2016,253:125-133.
王林娜. 重楼皂苷Ⅱ体外抗肺癌活性、分子机制及其制剂处方前研究 [D].武汉:湖北中医药大学, 2019.
PANG D,YANG C,LI C,et al.Polyphyllin Ⅱ inhibits liver cancer cell proliferation, migration and invasion through downregulated cofilin activity and the Akt/NF-κB pathway[J].Biol Open,2020,doi:10.1242/bio.046854http://dx.doi.org/10.1242/bio.046854.
游丽娇,孙芳园,杨小芳,等.重楼皂苷Ⅱ对人非小细胞肺癌A549细胞凋亡的影响[J].中国中医药信息杂志,2021,28(10):81-85.
LI J K,SUN H T,JIANG X L,et al.Polyphyllin Ⅱ induces protective autophagy and apoptosis via inhibiting PI3K/Akt/mTOR and STAT3 signaling in colorectal cancer cells[J].Int J Mol Sci,2022,23(19):11890.
姜福琼. 重楼皂苷Ⅰ/Ⅱ对膀胱癌细胞增殖和凋亡研究 [D].昆明:昆明医科大学, 2015.
NIU W, XU L, LI J, et al. Polyphyllin Ⅱ inhibits human bladder cancer migration and invasion by regulating EMT-associated factors and MMPs[J]. Oncol Lett,2020,20(3):2928-2936.
程卉,苏婧婧,王训翠,等.重楼皂苷Ⅱ诱导黑色素瘤B16细胞凋亡的机制研究[J].中药材,2016,39(11):2594-2597.
姜福琼,邓丹琪,王剑松,等.重楼皂苷Ⅱ对A375人黑素瘤细胞增殖和凋亡的影响[J].皮肤病与性病,2015(3):125-127,128.
侯梅,陈贺骏涛,苏婧婧,等.重楼皂苷Ⅱ诱导人胃癌MGC-803细胞凋亡的体外研究[J].中南药学,2019,17(5):647-651.
ZHENG R,JIANG H,LI J,et al.Polyphyllin Ⅱ restores sensitization of the resistance of PC-9/ZD cells to gefitinib by a negative regulation of the PI3K/Akt/mTOR signaling pathway[J].Curr Cancer Drug Targets,2017,17(4):376-385.
陈馨,刘霞霞,王文君,等.重楼皂苷Ⅱ诱导黑色素瘤细胞B16F10铁死亡的作用研究[J].中南药学,2023,21(2):279-284.
陈曦.共论前沿策略 首届天津国际肿瘤前沿论坛举行[EB/OL].(2022-09-06)[2024-01-08]. http://www.stdaily.com/index/kejixinwen/202209/7f042b50b5d242e1b161cb2a488bb136.shtmlhttp://www.stdaily.com/index/kejixinwen/202209/7f042b50b5d242e1b161cb2a488bb136.shtml.
王晓,张凌云.铁死亡通路关键基因在肝癌中的表达及临床意义[J].肝脏,2023,28(6):660-664.
洪婷,王依蕾,曾海荣,等.葫芦素B诱导细胞铁死亡抑制肝癌Huh-7细胞增殖的机制[J].中国药理学通报,2023,39(4):638-645.
刘金丽,佟雷,罗烨,等.隐丹参酮可能具有诱导人肝癌HepG2细胞铁死亡的作用[J].中国医学科学院学报,2021,43(3):366-370.
韩松峰. α-常春藤皂苷诱导肝癌Bel-7402细胞铁死亡的作用机制研究[D].洛阳:河南科技大学,2022.
程峰,张庸,王祥,等.谷胱甘肽过氧化物酶GPX4在铁死亡中的作用与机制研究进展[J].现代肿瘤医学,2021,29(7):1254-1258.
WANG C Y, CHAO C H. p53-mediated indirect regulation on cellular metabolism: From the mechanism of pathogenesis to the development of cancer therapeutics[J]. Front Oncol,2022,12:895112.
WANG Y, YANG L, ZHANG X, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53[J]. EMBO Rep,2019,20(7):e47563.
CHU B, KON N, CHEN D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol,2019,21(5):579-591.
田润英,兰斌,王国佐,等.中医药靶向调节p53介导的铁死亡机制研究进展[J].中国实验方剂学杂志,2022,28(21):264-275.
LIU Y, GU W. p53 in ferroptosis regulation: The new weapon for the old guardian[J]. Cell Death Differ,2022,29(5):895-910.
YE S, XU M, ZHU T, et al. Cytoglobin promotes sensitivity to ferroptosis by regulating p53-YAP1 axis in colon cancer cells[J]. J Cell Mol Med,2021,25(7):3300-3311.
TORTI S V,TORTI F M.Cellular iron metabolism in prognosis and therapy of breast cancer[J].Crit Rev Oncog,2013,18(5):435-448.
YUAN H,LI X,ZHANG X,et al.Identification of ACSL4 as a biomarker and contributor of ferroptosis[J].Biochem Biophys Res Commun,2016,478(3):1338-1343.
DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017,13(1):91-98.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构