1.北京中医药大学 东直门医院,北京 100700
2.北京中医药大学 中医学院,北京 100029
3.中日友好医院,北京 100029
许卢春,在读博士,从事脊髓损伤的中医药防治研究,E-mail:xuluchun1995@sina.com
俞兴,博士,教授,主任医师,从事脊髓损伤、脊柱退行性疾病的中医药防治研究,E-mail:yuxingbucm@163.com
唐向盛,博士,副教授,主任医师,从事脊柱脊髓疾病的基础与临床研究,E-mail:spinetang@hotmail.com;
收稿:2024-09-21,
录用:2024-11-19,
网络出版:2024-11-21,
纸质出版:2025-03-05
移动端阅览
许卢春,姜国正,马昱堃等.基于GPX4-ACSL4轴探讨补阳还五汤抑制铁死亡促进脊髓损伤后神经功能恢复的作用机制[J].中国实验方剂学杂志,2025,31(05):20-30.
XU Luchun,JIANG Guozheng,MA Yukun,et al.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(05):20-30.
许卢春,姜国正,马昱堃等.基于GPX4-ACSL4轴探讨补阳还五汤抑制铁死亡促进脊髓损伤后神经功能恢复的作用机制[J].中国实验方剂学杂志,2025,31(05):20-30. DOI: 10.13422/j.cnki.syfjx.20241802.
XU Luchun,JIANG Guozheng,MA Yukun,et al.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(05):20-30. DOI: 10.13422/j.cnki.syfjx.20241802.
目的
2
探讨补阳还五汤通过调控谷胱甘肽过氧化物酶4(GPX4)-长链酰基辅酶A合成酶4(ACSL4)轴抑制铁死亡,促进脊髓损伤后神经功能恢复的机制。
方法
2
将90只大鼠随机分为假手术组、模型组、补阳还五汤低剂量组(12.5 g·kg
-1
)、补阳还五汤高剂量组(25 g·kg
-1
)和补阳还五汤+抑制剂组(25 g·kg
-1
+5 g·kg
-1
RSL3)。通过allen法构建脊髓损伤模型。术后7 d和28 d取材,通过巴索-比蒂-布雷斯纳汉(BBB)评分观察大鼠运动功能,苏木素-伊红、尼氏和坚牢蓝染色观察脊髓组织学形态,透射电镜观察线粒体微观结构,免疫荧光染色观察神经元特异性核蛋白(NeuN)阳性细胞数量和髓磷脂碱性蛋白(MBP)、GPX4、ACSL4荧光强度,实时荧光定量聚合酶链式反应(Real-time PCR)检测GPX4和ACSL4 mRNA表达,酶联免疫吸附测定法(ELISA)检测活性氧(ROS)、丙二醛(MDA)、谷胱甘肽(GSH)和超氧化物歧化酶(SOD)水平,比色法检测脊髓组织铁含量。
结果
2
与假手术组比较,模型组大鼠BBB评分显著降低(
P
<
0.01),脊髓组织出现严重病理损伤和严重线粒体微观形态破坏;模型组NeuN阳性细胞数量显著降低(
P
<
0.01),MBP、GPX4荧光强度显著降低(
P
<
0.01),GSH、SOD水平显著下降(
P
<
0.01)及GPX4 mRNA相对表达水平显著下调(
P
<
0.01);模型组大鼠ROS、MDA、组织铁含量显著上调(
P
<
0.01),ACSL4荧光强度和ACSL4 mRNA相对表达水平显著升高(
P
<
0.01)。与模型组及补阳还五汤+抑制剂组比较,补阳还五汤组BBB评分明显升高(
P
<
0.05,
P
<
0.01)。补阳还五汤组较模型组及补阳还五汤+抑制剂组具有更轻的脊髓组织病理损伤,更少的水肿和炎性细胞浸润,更多的神经元存活,更加完整的髓鞘结构。此外,补阳还五汤组线粒体微观形态改善更为明显。与模型组及补阳还五汤+抑制剂组比较,补阳还五汤组NeuN阳性细胞数量和MBP荧光强度明显增加(
P
<
0.05,
P
<
0.01)。同时,补阳还五汤较模型组及补阳还五汤+抑制剂组显著增加GPX4荧光强度和mRNA相对表达(
P
<
0.01),减少ACSL4的荧光强度和mRNA相对表达(
P
<
0.01)。最后,相较于模型组及补阳还五汤+抑制剂组,补阳还五汤显著降低脊髓内ROS、MDA和组织铁含量(
P
<
0.01),并显著增加脊髓内GSH和SOD水平(
P
<
0.01)。
结论
2
补阳还五汤可以通过GPX4/ACSL4轴抑制铁死亡,减少神经元和髓鞘继发性损伤和氧化应激反应,最终促进神经功能的恢复。
Objective
2
To explore the mechanism by which Buyang Huanwutang regulates the glutathione peroxidase 4 (GPX4)-acyl-CoA synthetase long-chain family member 4 (ACSL4) axis to inhibit ferroptosis and promote neurological functional recovery after spinal cord injury (SCI).
Methods
2
Ninety rats were randomly divided into five groups: sham operation group, model group, low-dose Buyang Huanwutang group (12.5 g·kg
-1
), high-dose Buyang Huanwutang group (25 g·kg
-1
), and Buyang Huanwutang + inhibitor group (25 g·kg
-1
+ 5 g·kg
-1
RSL3). The SCI model was established by using the allen method. Tissue was collected on the 7th and 28th days after operation. Motor function was assessed by using the Basso-Beattie-Bresnahan (BBB) scale. Hematoxylin-eosin (HE), Nissl, and Luxol fast blue (LFB) staining were performed to observe spinal cord histopathology. Transmission
electron microscopy was used to examine mitochondrial ultrastructure. Immunofluorescence staining was used to detect the number of NeuN-positive cells and the fluorescence intensity of myelin basic protein (MBP), GPX4, and ACSL4. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) was used to analyze the mRNA expression of GPX4 and ACSL4. Enzyme linked immunosorbent assay (ELISA) was performed to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Colorimetric assays were used to determine the iron content in spinal cord tissue.
Results
2
Compared to the sham operation group, the model group exhibited significantly reduced BBB scores (
P
<
0.01), severe pathological damage in spinal cord tissue, and marked mitochondrial ultrastructural disruption. In addition, the model group showed a decrease in the number of NeuN-positive cells (
P
<
0.01), reduced fluorescence intensity of MBP and GPX4 (
P
<
0.01), lower levels of GSH and SOD (
P
<
0.01), and downregulated mRNA expression of GPX4 (
P
<
0.01). Moreover, compared to the sham operation group, the model group had elevated levels of ROS, MDA, and tissue iron content (
P
<
0.01), along with increased fluorescence intensity and mRNA expression of ACSL4 (
P
<
0.01). Compared with the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group showed significantly improved BBB scores (
P
<
0.05,
P
<
0.01) and exhibited less severe spinal cord tissue damage, reduced edema and inflammatory cell infiltration, increased neuronal survival, and more intact myelin structures. Additionally, mitochondrial ultrastructure was significantly improved in the Buyang Huanwutang group. Compared to the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group signif
icantly increased the number of NeuN-positive cells and the fluorescence intensity of MBP (
P
<
0.05,
P
<
0.01). Furthermore, Buyang Huanwutang significantly increased the fluorescence intensity and mRNA expression of GPX4 (
P
<
0.01) and decreased the fluorescence intensity and mRNA expression of ACSL4 (
P
<
0.01) compared to the model group and Buyang Huanwutang + inhibitor group. Finally, the Buyang Huanwutang group significantly decreased ROS, MDA, and tissue iron content (
P
<
0.01) and significantly increased GSH and SOD levels (
P
<
0.01) compared to the model group and Buyang Huanwutang + inhibitor group.
Conclusion
2
Buyang Huanwutang inhibits ferroptosis through the GPX4/ACSL4 axis, reduces secondary neuronal and myelin injury and oxidative stress, and ultimately promotes the recovery of neurological function.
SKINNIDER M A , GAUTIER M , TEO A , et al . Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica [J]. Nature , 2024 , 631 ( 8019 ): 150 - 163 .
LORACH H , GALVEZ A , SPAGNOLO V , et al . Walking naturally after spinal cord injury using a brain-spine interface [J]. Nature , 2023 , 618 ( 7963 ): 126 - 133 .
XU L , ZHAO H , YANG Y , et al . The application of stem cell sheets for neuronal regeneration after spinal cord injury:A systematic review of pre-clinical studies [J]. Syst Rev , 2023 , 12 ( 1 ): 225 .
XU L , YANG Y , ZHONG W , et al . Comparative efficacy of five most common traditional Chinese medicine monomers for promoting recovery of motor function in rats with blunt spinal cord injury:A network meta-analysis [J]. Front Neurol , 2023 , 14 : 1165076 .
MIGLIORINI F , COCCONI F , SCHÄFER L , et al . Pharmacological management of secondary chronic spinal cord injury:A systematic review [J]. Br Med Bull , 2024 , 151 ( 1 ): 49 - 68 .
许卢春 , 杨永栋 , 赵赫 , 等 . 非编码RNA调控脊髓损伤后神经元细胞凋亡的作用和机制 [J]. 中国组织工程研究 , 2023 , 27 ( 33 ): 5404 - 5412 .
XU L C , YANG Y D , ZHAO H , et al . Effect and mechanism of non-coding RNA in regulating neuronal apoptosis after spinal cord injury [J]. Chin J Tissue Eng Res , 2023 , 27 ( 33 ): 5404 - 5412 .
WANG Y , HU J , WU S , et al . Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases [J]. Signal Transduct Target Ther , 2023 , 8 ( 1 ): 449 .
SUN S , SHEN J , JIANG J , et al . Targeting ferroptosis opens new avenues for the development of novel therapeutics [J]. Signal Transduct Target Ther , 2023 , 8 ( 1 ): 372 .
HU X , ZHANG H , ZHANG Q , et al . Emerging role of STING signalling in CNS injury:Inflammation,autophagy,necroptosis,ferroptosis and pyroptosis [J]. J Neuroinflammation , 2022 , 19 ( 1 ): 242 .
LI Q S , JIA Y J . Ferroptosis:A critical player and potential therapeutic target in traumatic brain injury and spinal cord injury [J]. Neural Regen Res , 2023 , 18 ( 3 ): 506 - 512 .
LIU Y , WAN Y , JIANG Y , et al . GPX4:The hub of lipid oxidation,ferroptosis,disease and treatment [J]. Biochim Biophys Acta Rev Cancer , 2023 , 1878 ( 3 ): 188890 .
DING K , LIU C , LI L , et al . Acyl-CoA synthase ACSL4:An essential target in ferroptosis and fatty acid metabolism [J]. Chin Med J (Engl) , 2023 , 136 ( 21 ): 2521 - 2537 .
LIU G , DENG B , HUO L , et al . Tetramethylpyrazine alleviates ferroptosis and promotes functional recovery in spinal cord injury by regulating GPX4/ACSL4 [J]. Eur J Pharmacol , 2024 , 977 : 176710 .
边明真 , 包安 , 王海腾 , 等 . 脊髓损伤中西医疗法的研究进展 [J]. 现代中西医结合杂志 , 2023 , 32 ( 1 ): 133 - 138 .
BIAN M Z , BAO A , WANG H T , et al . Research progress of Chinese and western medicine therapy for spinal cord injury [J]. Mod Chin West Med , 2023 , 32 ( 1 ): 133 - 138 .
肖连根 , 樊光亚 , 苏文硕 , 等 . 补阳还五汤联合电针对不完全性脊髓损伤患者术后恢复的临床效果 [J]. 中国医药科学 , 2024 , 14 ( 9 ): 96 - 100 .
XIAO L G , FAN G Y , SU W S , et al . Clinical effect of Buyang Huanwutang combined with electroacupuncture on postoperative recovery of patients with incomplete spinal cord injury [J]. Chin J Med Sci , 2024 , 14 ( 9 ): 96 - 100 .
许洋 , 吴成林 , 郭德华 , 等 . 基于PI3K/Akt信号通路探究补阳还五汤联合骨髓间质干细胞移植治疗脊髓损伤的作用机制 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 4 ): 9 - 17 .
XU Y , WU C L , GUO D H , et al . Mechanism of Buyang Huanwutang combined with bone marrow mesenchymal stem cell transplantation in treatment of spinal cord injury based on PI3K/Akt signaling pathway [J]. Chin J Exp Tradit Med Formulae , 2023 , 29 ( 4 ): 9 - 17 .
覃浩然 , 钟远鸣 , 廖俊城 , 等 . 补阳还五汤治疗继发性脊髓损伤作用机制研究进展 [J]. 山西中医 , 2021 , 37 ( 8 ): 60 - 62 .
QIN H R , ZHONG Y M , LIAO J C , et al . Research progress on the mechanism of Buyang Huanwutang in the treatment of secondary spinal cord injury [J]. Shanxi J Tradit Chin Med , 2021 , 37 ( 8 ): 60 - 62 .
齐英娜 , 谭明生 , 王延雷 , 等 . 补阳还五汤对大鼠急性上颈脊髓损伤后血小板活化因子的影响 [J]. 中国骨伤 , 2018 , 31 ( 2 ): 170 - 174 .
QI Y N , TAN M S , WANG Y L , et al . Effect of Buyang Huanwutang on the expression of platelet activating factor after acute spinal cord injury in rats [J]. China J Orthop Traumatol , 2018 , 31 ( 2 ): 170 - 174 .
YANG Y D , YU X , WANG X M , et al . Tanshinone Ⅱ A improves functional recovery in spinal cord injury-induced lower urinary tract dysfunction [J]. Neural Regen Res , 2017 , 12 ( 2 ): 267 - 275 .
KANG Y , ZHU R , LI S , et al . Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury [J]. Neural Regen Res , 2023 , 18 ( 4 ): 881 - 888 .
BASSO D M , BEATTIE M S , BRESNAHAN J C . A sensitive and reliable locomotor rating scale for open field testing in rats [J]. J Neurotrauma , 1995 , 12 ( 1 ): 1 - 21 .
ZHU J , LIU Z , LIU Q , et al . Enhanced neural recovery and reduction of secondary damage in spinal cord injury through modulation of oxidative stress and neural response [J]. Sci Rep , 2024 , 14 ( 1 ): 19042 .
ZAVVARIAN M M , MODI A D , SADAT S , et al . Translational relevance of secondary intracellular signaling cascades following traumatic spinal cord injury [J]. Int J Mol Sci , 2024 , 25 ( 11 ): 5708 .
HELLENBRAND D J , QUINN C M , PIPER Z J , et al . The secondary injury cascade after spinal cord injury:An analysis of local cytokine/chemokine regulation [J]. Neural Regen Res , 2024 , 19 ( 6 ): 1308 - 1317 .
OPRIşOREANU A M , RYAN F , RICHMOND C , et al . Drug screening in zebrafish larvae reveals inflammation-related modulators of secondary damage after spinal cord injury in mice [J]. Theranostics , 2023 , 13 ( 8 ): 2531 - 2551 .
LI X , SONG Y , YANG Y , et al . Buyang Huanwutang promotes the neurological recovery of traumatic spinal cord injury via inhibiting apoptosis,inflammation,and oxidative stress [J]. Immun Inflamm Dis , 2023 , 11 ( 7 ): e933 .
NIE Y , FAN Y , ZHANG X , et al . Buyang Huanwutang improves neural recovery after spinal cord injury in rats through the mTOR signaling pathway and autophagy [J]. J Spinal Cord Med , 2023 , 46 ( 1 ): 99 - 106 .
李旭 , 杨阳 . 补阳还五汤对脊髓损伤大鼠脊髓功能修复及gp130、IL-6的影响 [J]. 时珍国医国药 , 2023 , 34 ( 10 ): 2350 - 2353 .
LI X , YANG Y . Effects of Buyang Huanwutang on spinal cord function recovery and the expression of gp130 and IL-6 in rats with spinal cord injury [J]. Lishizhen Med Mater Med Res , 2023 , 34 ( 10 ): 2350 - 2353 .
倪力力 , 欧阳建 , 李为 , 等 . 基于BDNF/Tr κ B信号通路探讨补阳还五汤治疗脊髓损伤的作用机制 [J]. 山西中医 , 2023 , 39 ( 12 ): 52 - 55 .
NI L L , OU Y J , LI W , et al . Approach to effect and mechanism of Buyang Huanwutang on spinal cord injury based on BDNF/TrkB signaling pathway [J]. Shanxi J Tradit Chin Med , 2023 , 39 ( 12 ): 52 - 55 .
李亚锋 , 王延雷 , 宋继鹏 , 等 . 补阳还五汤对急性脊髓损伤大鼠NOD样受体蛋白1/半胱氨酸蛋白水解酶-1细胞焦亡通路的影响 [J]. 中国中医骨伤科杂志 , 2020 , 28 ( 4 ): 6 - 9,14 .
LI Y F , WANG Y L , SONG J P , et al . The effect of Buyang Huanwutang on the pyroptosis pathway of NLRP1/Caspase-1 in rats with acute spinal cord injury [J]. Chin J Tradit Chin Orthop Traumatol , 2020 , 28 ( 4 ): 6 - 9,14 .
齐英娜 , 谭明生 , 王延雷 , 等 . 补阳还五汤对急性脊髓损伤大鼠内质网应激相关因子影响的研究 [J]. 中国中医骨伤科杂志 , 2018 , 26 ( 2 ): 8 - 12 .
QI Y N , TAN M S , WANG Y L , et al . effect of Buyang Huanwutang on the expression of endoplasmic reticulum related factors after acute spinal cord injury in rats [J]. Chin J Tradit Chin Orthop Traumatol , 2018 , 26 ( 2 ): 8 - 12 .
郭德华 , 吴成林 , 许洋 , 等 . 补阳还五汤对脊髓损伤大鼠脊髓星形胶质细胞增殖的影响 [J]. 时珍国医国药 , 2023 , 34 ( 4 ): 835 - 838 .
GUO D H , WU C L , XU Y , et al . Effect of Buyang Huanwutang on astrocyte proliferation in rats with spinal cord injury [J]. Lishizhen Med Mater Med Res , 2023 , 34 ( 4 ): 835 - 838 .
RYAN F , BLEX C , NGO T D , et al . Ferroptosis inhibitor improves outcome after early and delayed treatment in mild spinal cord injury [J]. Acta Neuropathol , 2024 , 147 ( 1 ): 106 .
ZHOU Z , LUO H , YU H , et al . Ferrostatin-1 facilitated neurological functional rehabilitation of spinal cord injury mice by inhibiting ferroptosis [J]. Eur J Med Res , 2023 , 28 ( 1 ): 336 .
SHI T , CHEN Y , ZHOU L , et al . Carboxymethyl cellulose/quaternized chitosan hydrogel loaded with polydopamine nanoparticles promotes spinal cord injury recovery by anti-ferroptosis and M1/M2 polarization modulation [J]. Int J Biol Macromol , 2024 , 275 ( Pt 1 ): 133484 .
YAO R , LIU M , LIANG F , et al . Hyperbaric oxygen therapy inhibits neuronal ferroptosis after spinal cord injury in mice [J]. Spine (Phila Pa 1976) , 2023 , 48 ( 22 ): 1553 - 1560 .
BAI X , YANG Y , LUO Y , et al . Design and synthesis of sulfonamide phenothiazine derivatives as novel ferroptosis inhibitors and their therapeutic effects in spinal cord injury [J]. Bioorg Chem , 2024 , 148 : 107458 .
DAR N J , JOHN U , BANO N , et al . Oxytosis/ferroptosis in neurodegeneration:The underlying role of master regulator glutathione peroxidase 4 (GPX4) [J]. Mol Neurobiol , 2024 , 61 ( 3 ): 1507 - 1526 .
HUSSAIN S , GUPTA G , SHAHWAN M , et al . Non-coding RNA:A key regulator in the Glutathione-GPX4 pathway of ferroptosis [J]. Noncoding RNA Res , 2024 , 9 ( 4 ): 1222 - 1234 .
BOUCHAOUI H , MAHONEY-SANCHEZ L , GARÇON G , et al . ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons [J]. Free Radic Biol Med , 2023 , 195 : 145 - 157 .
LI R , YAN X , XIAO C , et al . FTO deficiency in older livers exacerbates ferroptosis during ischaemia/reperfusion injury by upregulating ACSL4 and TFRC [J]. Nat Commun , 2024 , 15 ( 1 ): 4760 .
QU D , HU D , ZHANG J , et al . Identification and validation of ferroptosis-related genes in patients with acute spinal cord injury [J]. Mol Neurobiol , 2023 , 60 ( 9 ): 5411 - 5425 .
YU M , WANG Z , WANG D , et al . Oxidative stress following spinal cord injury:From molecular mechanisms to therapeutic targets [J]. J Neurosci Res , 2023 , 101 ( 10 ): 1538 - 1554 .
MAUGERI G , AMATO A , SORTINO M , et al . The influence of exercise on oxidative stress after spinal cord injury:A narrative review [J]. Antioxidants (Basel) , 2023 , 12 ( 7 ): 1401 .
PEDROZA-GARCÍA K A , CAREAGA-CÁRDENAS G , DÍAZ-GALINDO C , et al . Bioactive role of vitamins as a key modulator of oxidative stress,cellular damage and comorbidities associated with spinal cord injury (SCI) [J]. Nutr Neurosci , 2023 , 26 ( 11 ): 1120 - 1137 .
ZHANG C , ZHAI T , ZHU J , et al . Research progress of antioxidants in oxidative stress therapy after spinal cord injury [J]. Neurochem Res , 2023 , 48 ( 12 ): 3473 - 3484 .
CHEN N , XU Y , LIU Y , et al . CEBPD aggravates apoptosis and oxidative stress of neuron after ischemic stroke by Nrf2/HO-1 pathway [J]. Exp Cell Res , 2024 , 440 ( 1 ): 114127 .
SUTHERLAND T C , GEOFFROY C G . Are mitochondria the key to reduce the age-dependent decline in axon growth after spinal cord injury? [J]. Neural Regen Res , 2021 , 16 ( 7 ): 1444 - 1445 .
王虎平 , 吕育洁 , 胡韵韵 , 等 . 基于RAS/RAF/MEK/ERK信号通路探讨黑逍遥散干预AD模型大鼠氧化应激的作用机制 [J]. 中国实验方剂学杂志 , 2024 , 30 ( 17 ): 35 - 42 .
WANG H P , LV Y J , HU Y Yet al . Hei Xiaoyaosan regulates RAS/RAF/MEK/ERK signaling pathway to ameliorate oxidative stress in rat model of AD [J]. Chin J Exp Tradit Med Form , 2024 , 30 ( 17 ): 35 - 42 .
ZHANG Z , LI P , CHEN Y , et al . Mitochondria-mediated ferroptosis induced by CARD9 ablation prevents MDSCs-dependent antifungal immunity [J]. Cell Commun Signal , 2024 , 22 ( 1 ): 210 .
HASSANZADEH S , SABETVAND M , SARDAR R , et al . Spinal cord injury model mitochondria connect altered function with defects of mitochondrion morphology:An ultrastructural study [J]. Mol Neurobiol , 2024 , 61 ( 4 ): 2241 - 2248 .
FENG F , HE S , LI X , et al . Mitochondria-mediated ferroptosis in diseases therapy:From molecular mechanisms to implications [J]. Aging Dis , 2024 , 15 ( 2 ): 714 - 738 .
0
浏览量
305
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
