1.中国中医科学院 中药研究所,北京 100700
2.黑龙江中医药大学,哈尔滨 150040
朱琳,硕士,从事中药药理学研究,E-mail:zhulin_948546@163.com
杨伟鹏,博士,研究员,博士生导师,从事中药药理学研究,E-mail:wpyang@icmm.ac.cn
收稿:2024-07-15,
网络出版:2024-09-12,
纸质出版:2024-12-05
移动端阅览
朱琳,王敦方,冯雪等.黄芩汤对炎症相关性结直肠癌小鼠炎症及短链脂肪酸相关肠道菌群的影响[J].中国实验方剂学杂志,2024,30(23):157-169.
ZHU Lin,WANG Dunfang,FENG Xue,et al.Effect of Huangqintang on Inflammation and Short-chain Fatty Acid-related Gut Microbiota in Mouse Model of Inflammation-associated Colorectal Cancer[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(23):157-169.
朱琳,王敦方,冯雪等.黄芩汤对炎症相关性结直肠癌小鼠炎症及短链脂肪酸相关肠道菌群的影响[J].中国实验方剂学杂志,2024,30(23):157-169. DOI: 10.13422/j.cnki.syfjx.20242130.
ZHU Lin,WANG Dunfang,FENG Xue,et al.Effect of Huangqintang on Inflammation and Short-chain Fatty Acid-related Gut Microbiota in Mouse Model of Inflammation-associated Colorectal Cancer[J].Chinese Journal of Experimental Traditional Medical Formulae,2024,30(23):157-169. DOI: 10.13422/j.cnki.syfjx.20242130.
目的
2
构建氧化偶氮甲烷/葡聚糖硫酸钠(AOM/DSS)炎症相关性结直肠癌(CAC)小鼠模型,采用16S rRNA高通量测序方法,探讨CAC模型小鼠发生发展进程中黄芩汤对小鼠肠道菌群结构的影响。
方法
2
将225只C57BL/6J小鼠随机分为5组,分别为正常组、模型组、美沙拉嗪组、黄芩汤高、低(18、9 g·kg
-1
)剂量组。每组45只,除正常组外,每只小鼠在1周内分别于第1天和第5天进行10 mg·kg
-1
AOM注射,然后给予1.5% DSS溶液7 d,之后更换为无菌水14 d,此为1周期,共计3周期。在给予DSS第1天同时给予美沙拉嗪和黄芩汤高、低剂量组药物灌胃,正常组和模型组给予纯水进行灌胃,每日1次,直至3个周期结束。根据CAC发病进程,分为炎症阶段、增殖阶段及肿瘤生成阶段。每个周期结束后,分别测量各组小鼠体质量、结肠长度、记录小鼠结肠肿瘤数目,并进行疾病活动指数(DAI)评分。酶联免疫吸附测定(ELISA)检测每个周期小鼠血清中白细胞介素-6(IL-6)、肿瘤坏死因子-
α
(TNF-
α
)、白细胞介素-1
β
(IL-1
β
)及胃肠道肿瘤标志物糖类抗原199(CA199)含量;苏木素-伊红(HE)染色观察结肠病变。同时,采集正常组、模型组和黄芩汤高剂量组小鼠新鲜粪便3~5粒,按照DNA提取试剂盒说明书步骤提取小鼠粪便 DNA,进行16S rRNA高通量测序并分析结果。
结果
2
与正常组比较,模型组小鼠3个阶段体质量显著下降(
P
<
0.01),DAI评分逐渐上升,结肠长度明显缩短(
P
<
0.05)。与正常组比较,增殖阶段模型组小鼠,IL-1
β
表达上升(
P
<
0.05),IL-6、TNF-
α
表达明显上升(
P
<
0.05);CA199在炎症和增殖阶段升高,肿瘤阶段显著升高(
P
<
0.01)。HE
病理结果显示,与正常组比较,模型组小鼠,炎症阶段炎症细胞浸润明显,随着疾病进展到增殖和肿瘤阶段,肌层增厚,黏膜层细胞异常增生,最终形成晚期高级别上皮内肿瘤病变。黄芩汤给药后,与模型组比较,在炎症、增殖和肿瘤生成阶段各组小鼠体质量未见明显改善,DAI评分降低,结肠长度增加;肿瘤生成阶段结肠长度显著增加(
P
<
0.01)。在肿瘤生成阶段,黄芩汤给药组显著抑制了肿瘤生成和生长,CAC小鼠肿瘤数目显著减少(
P
<
0.01)。黄芩汤高、低剂量组IL-6、TNF-
α
、IL-1
β
在炎症、增殖和肿瘤阶段降低,IL-6、TNF-
α
3个阶段均明显降低(
P
<
0.05,
P
<
0.01);CA199在炎症阶段降低,增殖和肿瘤阶段明显降低(
P
<
0.05,
P
<
0.01)。HE结果显示,与模型组比较,给药组有效减轻了炎症反应、异常细胞增殖,延缓了肿瘤发生。肠道菌群结果显示,与正常组比较,在炎症、增殖和肿瘤生成阶段,模型组小鼠Alpha、Beta多样性降低,肠道菌群结构变化明显。与模型组比较,黄芩汤给药后,在肿瘤生成阶段明显调节模型小鼠的物种数量及Alpha、Beta多样性。黄芩汤给药后,在炎症、增殖和肿瘤生成阶段纠正肠道菌群回归正常丰度与多样性;在炎症阶段,门水平上,正向调节了小鼠的2种差异菌门(厚壁菌门、拟杆菌门)与3种差异菌属(
Muribaculaceae
、
Rikenellaceae
_RC9_
gut
_group、
Flavonifractor
);在增殖阶段,门水平上,正向调节了小鼠的2种差异菌门(拟杆菌门、髌骨菌门)与5种差异菌属(
Muribaculaceae
、
Rikenellaceae
_RC9_
gut
_group、
Candidatus
_
Saccharimonas
、
norank
_
f
__UCG-010、
Allobaculum
);肿瘤生成阶段,正向调节了小鼠的2种差异菌门(变形菌门、髌骨菌门)与8种差异菌属(
Muribaculaceae
、
Candidatus
_
Saccharimonas
、
norank
_
f
__UCG-010、
Lachnospiraceae_
UCG-006、
Allobaculum
、
Bacteroides
、
Lachnospiraceae_
NK4A136
_
group、
Flavonifractor
)。
结论
2
黄芩汤能够较好地干预AOM/DSS 诱发的小鼠结肠炎癌转化进程,其作用机制可能与其纠正CAC模型小鼠炎症和短链脂肪酸相关菌群紊乱,直接或间接延缓结肠炎癌转化相关。
Objective
2
To construct a mouse model of inflammation-associated colorectal cancer (CAC) by using azoxymethane (AOM)/dextran sulfate sodium (DSS) and investigate the effect of Huangqintang on the gut microbiota structure of mice during the occurrence and development of CAC by 16S rRNA gene high-throughput sequencing.
Method
2
A total of 225 C57BL/6J mice were randomized into 5 groups (
n
=45): Normal, model, positive drug (mesalazine), and high (18 g·kg
-1
) and low (9 g·kg
-1
)-dose Huangqintang. Except those in the normal group, each mouse was injected with 10 mg·kg
-1
AOM on day 1 and day 5 within 1 week and then given 1.5% DSS solution for 7 days, which was then changed to sterile water for 14 days. This process referred to as one cycle, and mice were treated for a total of 3 cycles. On the first day of DSS treatment, mice were administrated with corresponding drugs by gavage, and the normal group and the model group were administrated with pure water by gavage, once a day until the end of the third cycle. The progression of CAC was divided into inflammation, proliferation, and tumorigenesis stages. At the end of each cycle, the body weight and colon length were measured for mice in each group, and the number of colon tumors in mice was recorded. Meanwhile, the disease activity index (DAI) was determined. The serum levels of interleukin-6 (IL-6), tumor necrosis factor-
α
(TNF-
α
), interleukin-1
β
(IL-1
β
), and carbohydrate antigen-199 (CA199), a tumor marker in the gastrointestinal tract of mice, were measured by ELISA. Hematoxylin-eosin staining was employed to observe colon lesions. At the same time, 3-5 pellets of fresh feces of mice in the normal group, model group, and high-dose Huangqintang group were collected, from which the fecal DNA of mice was extracted for 16S rRNA gene high-throughput sequencing.
Result
2
Compared with the normal group, the model group showed decreased body weight (
P
<
0.01), increased DAI, and shortened colon length (
P
<
0.05) at the three stages. Compared with the normal group, the model group showed elevated levels of IL-1
β
, IL-6, and TNF-
α
(
P
<
0.05) at the proliferation stage and elevated levels of CA199 at the inflammation, proliferation, and tumorigenesis (
P
<
0.01) stages. Compared with the normal group, the model group presented obvious infiltration of inflammatory cells at the inflammation stage, thickening of the muscle layer and abnormal proliferation of mucosal layer cells at the proliferation and tumorigenesis stages, and final formation of advanced intraepithelial tumor lesions. Compared with the model group, the Huangqintang groups showed no significant improvement in the body weight, decreased DAI score, and increased colon length at the three stages, and the increase of colon length in the tumorigenesis stage was significant (
P
<
0.01). At the tumorigenesis stage, the administration of Huangqintang inhibited tumor formation and growth, reduced the number of tumors (
P
<
0.01), lowered the levels of IL-6 (
P
<
0.05,
P
<
0.01), TNF-
α
(
P
<
0.05,
P
<
0.01), and IL-1
β
at the three stages, and decreased CA199 at the inflammation stage as well as at the proliferation and tumorigenesis stages (
P
<
0.01,
P
<
0.05). Compared with the model group, the administration of Huangqintang reduced inflammation and abnormal cell proliferation, delaying the occurrence of tumors. Compared with the normal group, the model group showcased decreased alpha and beta diversity and altered structure of gut microbiota at the inflammation, proliferation, and tumorigenesis stages. The administration of Huangqintang adjusted the abundance and diversity of gut microbiota to the normal levels. At the inflammation stage, Huangqintang positively regulated two differential phyla (Firmicutes and Bacteroidetes) and three differential genera (
Muribaculaceae
,
Rikenellaceae_
RC9
_gut_
group, and
Flavonifractor
) in mice. At
the proliferation stage, Huangqintang positively regulated two differential phyla (Bacteroidetes and Patescibacteria) and five differential genera (
Muribaculaceae
,
Rikenellaceae_
RC9
_gut_
group,
Candidatus_Saccharimonas
,
norank_f__
UCG
-
010, and
Allobaculum
). At the tumorigenesis stage, Huangqintang positively regulated two differential phyla (Proteobacteria and Patescibacteria) and eight differential genera (
Muribaculaceae
,
Candidatus_Saccharimonas
,
norank_f
_UCG-010,
Lachnospiraceae_
UCG-006,
Allobaculum
,
Bacteroides
,
Lachnospiraceae_
NK4A136
_
group, and
Flavonifractor
) in mice.
Conclusion
2
Huangqintang can intervene in the AOM/DSS-induced transformation of inflammation to CAC in mice by correcting inflammation and short-chain fatty acid-related microbiota disorders.
BARITAKI S , DE BREE E , CHATZAKI E , et al . Chronic stress, inflammation, and colon cancer: A CRH system-driven molecular crosstalk [J]. J Clin Med , 2019 , 8 ( 10 ): 1669 .
YAN C , SHAN F , LI Z Y . Prevalence of colorectal cancer in 2020: A comparative analysis between China and the world [J]. Chin J Oncol , 2023 , 45 ( 3 ): 221 - 229 .
任宇 , 陈茜 , 陈孔德 , 等 . 中国结直肠癌患者经济负担研究的系统评价 [J]. 中国药物经济学 , 2022 , 17 ( 7 ): 5 - 11 .
CHINESE MEDICAL ASSOCIATION . Expert consensus on the early diagnosis and treatment of colorectal cancer in China (2023 edition) [J]. Chin Med J , 2023 , 103 ( 48 ): 3896 - 3908 .
李红领 . 黄嘌呤氧化还原酶对结肠炎转归的影响及其黄酮类抑制剂的应用研究 [D]. 无锡 : 江南大学 , 2021 .
ANDERSON P M , LALLA R V . Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy [J]. Nutrients , 2020 , 12 ( 6 ): 1675 .
LIU J , DONG W , ZHAO J , et al . Gut microbiota profiling variated during colorectal cancer development in mouse [J]. BMC Genomics , 2022 , 23 ( Suppl 4 ): 848 .
LIANG X , LI H , TIAN G , et al . Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer [J]. Sci Rep , 2014 , 4 ( 1 ): 4985 .
陈枝凡 , 陈钰璘 , 聂莎 , 等 . 瓜蒌薤白白酒汤调节肠道菌群及其代谢物改善小鼠动脉粥样硬化的实验研究 [J]. 中国比较医学杂志 , 2024 , 34 ( 7 ): 10 - 19 .
刘雅清 , 徐航宇 , 王敦方 , 等 . 黄芩汤对溃疡性结肠炎小鼠肠道菌群的影响及肠黏膜屏障的保护作用机制 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 7 ): 11 - 19 .
刘滨 , 刘雅清 , 宋红新 , 等 . 黄芩汤对溃疡性结肠炎小鼠Th17/Treg、Th1/Th2细胞平衡的影响 [J]. 中国实验方剂学杂志 , 2022 , 28 ( 22 ): 7 - 15 .
王敦方 . 基于TLR4/MyD88通路和组学研究黄芩汤治疗溃疡性结肠炎的作用机制 [D]. 北京 : 中国中医科学院 , 2017 .
朱琳 , 王敦方 , 冯雪 , 等 . 黄芩汤对结肠炎相关性结肠癌肠道炎症和增殖的干预机制 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 22 ): 1 - 10 .
WRTZ S , NEUFERT C , WEIGMANN B , et al . Chemically induced mouse models of intestinal inflammation [J]. Nat Protoc , 2007 , 2 ( 3 ): 541 - 546 .
WIRTZ S , POPP V , KINDERMANN M , et al . Chemically induced mouse models of acute and chronic intestinal inflammation [J]. Nat Protoc , 2017 , 12 ( 7 ): 1295 - 1309 .
NEUFERT C , BECKER C , NEURATH M F . An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression [J]. Nat Protoc , 2007 , 2 ( 8 ): 1998 - 2004 .
DEKKER E , TANIS P J , VLEUGELS J , et al . Colorectal cancer [J]. Lancet , 2019 , 394 ( 10207 ): 1467 - 1480 .
陈奇 . 中药药理研究方法学 [M]. 北京 : 人民卫生出版社 , 2006 .
马旭冉 . 基于多组学技术探究黄芩汤干预结肠炎相关结直肠癌的作用机制 [D]. 北京 : 中国中医科学院 , 2022 .
汪海 . 萸连配伍对AOM/DSS诱导的小鼠结肠炎癌转化模型的阻延效应及机制研究 [D]. 成都 : 成都中医药大学 , 2020 .
苏晓兰 , 张格知 , 张涛 , 等 . 清热化湿调枢方对溃疡性结肠炎小鼠肠道黏膜的影响 [J]. 中国中西医结合杂志 , 2022 , 42 ( 8 ): 973 - 978 .
吴昊 , 于小红 , 王焕君 , 等 . 雷公藤对右旋葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠肠道菌群的影响 [J]. 中草药 , 2020 , 51 ( 2 ): 387 - 396 .
徐航宇 , 王彦礼 , 王敦方 , 等 . 高通量测序技术研究黄芩汤对溃疡性结肠炎大鼠肠道菌群的影响 [J]. 药学学报 , 2017 , 52 ( 11 ): 1673 - 1682 .
ARAN V , VICTORINO A P , THULER L C , et al . Colorectal cancer: Epidemiology, disease mechanisms and interventions to reduce onset and mortality [J]. Clin Colorectal Cancer , 2016 , 15 ( 3 ): 195 - 203 .
CHENG Y , LI Z , LING L . The intestinal microbiota in colorectal cancer [J]. Front Immunol , 2020 , 11 : 1 - 13 .
DEKKER E , TANIS P J , VLEUGELS J , et al . Colorectal cancer [J]. Lancet , 2019 , 394 ( 10207 ): 1467 - 1480 .
KARAOGLAN N , ÇATIKOGLU A , YILDIRIM SARI H , et al . Nurses′ knowledge and experiences of peripheral intravenous catheter insertion at a tertiary paediatric health centre [J]. Brit J Nur (Mark Allen Publishing) , 2022 , 31 ( 14 ): S18 - S25 .
龙泽凡 . 黄芩汤治疗溃疡性结肠炎的系统评价和Meta分析 [D]. 承德 : 承德医学院中药学 , 2021 .
尤伟 , 张梅 , 李平 , 等 . 亮菌多糖对顺铂致小鼠肠黏膜损伤的保护作用 [J]. 中国新药杂志 , 2013 , 22 ( 22 ): 2683 - 2687 .
刘利 , 叶映泉 , 桂仲旋 , 等 . 亮菌多糖对AOM/DSS炎症相关性结肠癌小鼠模型及其肠道菌群的影响 [J]. 现代肿瘤医学 , 2024 , 32 ( 12 ): 2161 - 2170 .
SCOTT K P , DUNCAN S H , FLINT H J . Dietary fibre and the gutmicrobiota [J]. Nutrition Bulletin , 2008 , 33 ( 3 ): 159 - 267 .
SHIN J H , TILLOTSON G , MACKENZIE T N , et al . Bacteroides and related species: The keystone taxa of the human gut microbiota [J]. Anaerobe , 2024 , 85 : 102819 .
YEKANI M , BAGHI H B , NAGHILI B , et al . To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis [J]. Microb Pathog , 2020 , 149 : 104506 .
ZAFAR H , SAIER M H . Gut Bacteroides species in health and disease [J]. Gut Microbes , 2021 , 13 ( 1 ): 1 - 20 .
BASHA O M , HAFEZ R A , SALEM S M , et al . Impact of gut microbiome alteration in ulcerative colitis patients on disease severity and outcome [J]. Clin Exp Med , 2023 , 23 ( 5 ): 1763 - 1772 .
WANG N , LI Z , CAO L , et al . Trilobatin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via the NF- κ B pathway and alterations in gut microbiota [J]. PLoS One , 2024 , 19 ( 6 ): e0305926 .
WANG M , GAO C , LESSING D J , et al . Saccharomyces cerevisiae SC-2201 Attenuates AOM/DSS-induced colorectal cancer by modulating the gut microbiome and blocking proinflammatory mediators [J]. Probiotics Antimicrob Proteins , 2024 , doi: 10.1007/s12602-024-10228-0 http://dx.doi.org/10.1007/s12602-024-10228-0 .
PENG Y , WEI J , JIA X , et al . Changes in the microbiota in different intestinal segments of mice with sepsis [J]. Front Cell Infect Microbiol , 2022 , 12 : 954347 .
ZHANG Z , CAO H , SONG N , et al . Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition [J]. Food Chem Toxicol , 2020 , 138 : 111237 .
WANG W , XU Y , WANG X , et al . Swimming impedes intestinal microbiota and lipid metabolites of tumorigenesis in colitis-associated cancer [J]. Front Oncol , 2022 , 12 : 929092 .
YU L , LU J , DU W . Tryptophan metabolism in digestive system tumors: Unraveling the pathways and implications [J]. Cell Commun Signal , 2024 , 22 ( 1 ): 174 .
LIN H , MENG L , SUN Z , et al . Yellow wine polyphenolic compound protects against doxorubicin-induced cardiotoxicity by modulating the composition and metabolic function of the gut microbiota [J]. Circ Heart Fail , 2021 , 14 ( 10 ): e008220 .
CARLIER J , BEDORA-FAURE M , KOUAS G , et al . Proposal to unify Clostridium orbiscindens Winteret al. 1991 and Eubacterium plautii (Séguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov [J]. Int J Syst Evol Microbiol , 2010 , 6 ( 3 ): 585 - 590 .
HOLLISTER E B , OEZGUEN N , CHUMPITAZI B P , et al . Leveraging human microbiome features to diagnose and stratify children with irritable bowel syndrome [J]. J Mol Diagn , 2019 , 21 ( 3 ): 449 - 461 .
YANG Y , DU L , SHI D , et al . Dysbiosis of human gut microbiome in young-onset colorectal cancer [J]. Nat Commun , 2021 , 12 ( 1 ): 6757 .
LANG S , FAIRFIED B , GAO B , et al . Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients [J]. Gut Microbes , 2020 , 12 ( 1 ): 1785251 .
ARMSTRONG H , ALIPOUR M , VALCHEVA R , et al . Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases [J]. Microbiome , 2019 , 7 ( 1 ): 1 .
WANG X , YU C , LIU X , et al . Fenofibrate ameliorated systemic and retinal inflammation and modulated gut microbiota in high-fat diet-induced mice [J]. Front Cell Infect Microbiol , 2022 , 12 : 839592 .
LI X , ZENG F , HUANG Y , et al . The positive effects of grifola frondosa heteropolysaccharide on NAFLD and regulation of the gut microbiota [J]. Int J Mol Sci , 2019 , 20 ( 21 ): 5302 .
GRYAZNOVA M , DVORETSKAYA Y , BURAKOVA I , et al . Dynamics of changes in the gut microbiota of healthy mice fed with lactic acid bacteria and bifidobacteria [J]. Microorganisms , 2022 , 10 ( 5 ): 1020 .
YU H , LI X X , HAN X , et al . Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses [J]. Front Microbiol , 2023 , 14 : 1126808 .
XIE Y , SUN J , HU C , et al . Oral microbiota is associated with immune recovery in human immunodeficiency virus-infected individuals [J]. Front Microbiol , 2021 , 12 : 794746 .
0
浏览量
86
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
