中国中医科学院 中药研究所,北京 100700
孙绮悦,在读博士,从事中药抗病毒与抗感染药理研究,E-mail:Sunqiyue123@outlook.com
崔晓兰,博士,研究员,中药药理与新药研发,E-mail:xlcui@icmm.ac.cn
孙静,博士,副研究员,中药药理与新药研发,E-mail:jingziaiwei@126.com;
收稿:2024-10-18,
修回:2024-12-24,
录用:2024-12-31,
网络出版:2025-01-07,
纸质出版:2025-12-20
移动端阅览
孙绮悦,郭姗姗,高双荣等.基于蛋白质组学探讨马鞭草苷对人冠状病毒229E感染小鼠肺损伤的治疗作用及机制[J].中国实验方剂学杂志,2025,31(24):69-78.
SUN Qiyue,GUO Shanshan,GAO Shuangrong,et al.Proteomics-based Investigation of Therapeutic Effect and Mechanism of Verbenalin on Lung Injury in Mice Infected with Human Coronavirus-229E[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(24):69-78.
孙绮悦,郭姗姗,高双荣等.基于蛋白质组学探讨马鞭草苷对人冠状病毒229E感染小鼠肺损伤的治疗作用及机制[J].中国实验方剂学杂志,2025,31(24):69-78. DOI: 10.13422/j.cnki.syfjx.20242436.
SUN Qiyue,GUO Shanshan,GAO Shuangrong,et al.Proteomics-based Investigation of Therapeutic Effect and Mechanism of Verbenalin on Lung Injury in Mice Infected with Human Coronavirus-229E[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(24):69-78. DOI: 10.13422/j.cnki.syfjx.20242436.
目的
2
评价马鞭草苷对人冠状病毒229E(HCoV-229E)体内、外感染模型的药理作用,并通过蛋白质组学分析,初步探究马鞭草苷的抗病毒作用机制。
方法
2
体外采用细胞增殖与活性检测-8(CCK-8)建立HCoV-229E感染人非小细胞肺癌细胞系(A549)细胞损伤的模型,将A549细胞作为5组,正常组、模型组和3个马鞭草苷处理浓度组(125、62.5、31.25 μmol·L
-1
),通过细胞存活率检测、免疫荧光染色方法评价马鞭草苷的细胞保护活性;体内将30只BALB/c小鼠随机分为正常组,模型组,磷酸氯喹组,马鞭草苷高、低剂量组(40、20 mg·kg
-1
),每组6只。建立HCoV-229E感染小鼠肺损伤模型评价马鞭草苷的治疗作用。分别通过检测肺指数、肺抑制率评价肺部损伤情况,酶联免疫吸附测定法(ELISA)评价肺部炎症因子的严重程度;微计算机断层扫描(Micro-CT)检测肺部的形态和结构;苏木素-伊红(HE)染色评价肺组织病理学改变;进一步采用四维数据独立组识别(4D-DIA)蛋白质组学方法,通过差异表达蛋白筛选、功能注释、富集分析及蛋白互作网络分析方法,初步分析马鞭草苷治疗HCoV-229E感染小鼠肺损伤模型的可能机制。
结果
2
A549细胞选用HCoV-229E原倍浓度感染36 h建立体外感染模型,马鞭草苷的最大无毒浓度为125 μmol·L
-1
,半数细胞毒性浓度(CC
50
)值为288.8 μmol·L
-1
。与正常组比较,模型组细胞存活率显著下降(
P
<
0.01),死亡细胞比例显著
增加(
P
<
0.01),线粒体损伤,膜电位显著降低(
P
<
0.01);而不同浓度马鞭草苷(125、62.5、31.25 μmol·L
-1
)处理后,均能显著提高细胞存活率(
P
<
0.01),降低细胞死亡比例(
P
<
0.01),并调节线粒体膜电位(
P
<
0.01)。体内实验进一步验证了马鞭草苷对HCoV-229E感染小鼠的治疗作用。与正常组比较,模型组小鼠肺指数显著升高(
P
<
0.01),肺组织损伤明显加重,肺部体积肿大,炎症因子白细胞介素(IL)-6、肿瘤坏死因子(TNF)-
α
的表达显著升高(
P
<
0.01)。而在马鞭草苷处理组中,这些病理改变显著改善,肺指数显著降低(
P
<
0.01),肺组织损伤减轻,肺部体积肿大缓解,炎症因子表达也显著降低(
P
<
0.01)。蛋白质组学分析结果显示,与正常组比较,模型组富集到多种与抗病毒免疫反应相关信号通路,包括核转录因子-
κ
B(NF-
κ
B)信号通路(
P
<
0.05)。与模型组比较,马鞭草苷组富集到多种与炎症反应和自噬相关的信号通路(
P
<
0.05),提示马鞭草苷可能通过调节这些信号通路发挥其抗病毒和抗炎作用。
结论
2
马鞭草苷在HCoV-229E感染体内、外模型中均表现出较好的治疗作用,其机制可能与NOD样受体蛋白3(NLRP3)炎症小体通路和线粒体自噬有关。
Objective
2
To evaluate the pharmacological effects of verbenalin on both
in vitro
and
in vivo
infection models of human coronavirus 229E (HCoV-229E) and to preliminarily explore the antiviral mechanism of verbenalin through proteomic analysis.
Methods
2
In vitro
, the cell counting kit-8 (CCK-8) for cell proliferation and viability assessment was used to establish a model of HCoV-229E-induced injury in human lung adenocarcinoma cells(A549). A549 cells were divided into five groups: normal group, model group, and three verbenalin treatment groups (125, 62.5, and 31.25 μmol·L
-1
). The cell protective activity of verbenalin was evaluated through cell viability assay and immunofluorescence staining.
In vivo
, 30 BALB/c mice were randomly divided into normal group, model group, chloroquine group, and high-dose, low-dose verbenalin groups (40 and 20 mg·kg
-1
), with six mice per group. An HCoV-229E-induced mouse lung injury model was established to evaluate the therapeu
tic effects of verbenalin. Lung injury was assessed by detecting the lung index and lung inhibition rate. The severity of pulmonary inflammation cytokines was measured by enzyme-linked immunosorbent assay (ELISA), while the lung morphology and structure were analyzed by micro-computed tomography (Micro-CT). Hematoxylin and eosin (HE) staining was used to assess histopathological changes in lung tissue. Additionally, four-dimensional data-independent acquisition (4D-DIA) proteomics was employed to preliminarily explore the potential mechanisms of verbenalin in treating HCoV-229E-induced lung injury in mice, through differential protein expression screening, functional annotation, enrichment analysis, and protein-protein interaction network analysis.
Results
2
The A549 cells were infected with HCoV-229E at the original viral titer for 36 hours to establish an
in vitro
infection model. The maximum non-toxic concentration of verbenalin was 125 μmol·L
-1
, and the half-maximal cytotoxic concentration (CC
50
) was 288.8 μmol·L
-1
. Compared with the normal group, the model group showed a significant decrease in cell viability (
P
<
0.01), a significant increase in the proportion of dead cells (
P
<
0.01), mitochondrial damage, and a significant reduction in mitochondrial membrane potential (
P
<
0.01). After treatment with different concentrations of verbenalin (125, 62.5, and 31.25 μmol·L
-1
), cell viability was significantly increased (
P
<
0.01), and the proportion of dead cells was reduced (
P
<
0.01), with mitochondrial membrane potential restored (
P
<
0.01).
In vivo
experiments further confirmed the therapeutic effect of verbenalin on HCoV-229E-infected mice. Compared to the normal group, the model group showed a significant increase in the lung index (
P
<
0.01), severe lung tissue injury, lung v
olume enlargement, and a significant increase in the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-
α
(TNF-
α
) (
P
<
0.01). In contrast, in the verbenalin treatment groups, these pathological changes were significantly improved, with a reduction in the lung index (
P
<
0.01), alleviation of lung tissue injury, reduced lung volume enlargement, and a significant decrease in inflammatory cytokine expression (
P
<
0.01). Proteomics analysis revealed that, compared to the normal group, the model group showed enrichment in several antiviral immune-related signaling pathways, including the nuclear factor-
κ
B (NF-
κ
B) signaling pathway (
P
<
0.05). Compared to the model group, the verbenalin treatment group showed enrichment in several signaling pathways related to inflammatory response and autophagy (
P
<
0.05), suggesting that verbenalin may exert its antiviral and anti-inflammatory effects by regulating these pathways.
Conclusion
2
Verbenalin demonstrates significant therapeutic effects in both
in vitro
and
in vivo
HCoV-229E infection models, with its mechanism likely related to the NOD-like receptor protein 3 (NLRP3) inflammasome pathway and mitochondrial autophagy.
李贝金 , 李潇 , 薛嘉睿 , 等 . 新冠肺炎炎症风暴的机制探讨及中医药的干预作用 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 13 ): 32 - 38 .
LI B J , LI X , XUE J R , et al . Mechanism of cytokine storm in COVID-19 and the intervention effect of traditional Chinese medicine [J]. Chin J Exp Tradit Med Form , 2020 , 26 ( 13 ): 32 - 38 .
郭姗姗 , 李丹 , 时宇静 , 等 . 基于冠状病毒肺炎寒湿疫毒袭肺证病证结合模型的金柴抗病毒胶囊疗效评价 [J]. 中国实验方剂学杂志 , 2020 , 26 ( 13 ): 1 - 7 .
GUO S S , LI D , SHI Y J , et al . Efficacy evaluation of Jinchai antiviral capsules based on the combined model of cold-damp epidemic toxin attacking the lung syndrome in coronavirus pneumonia [J]. Chin J Exp Tradit Med Form , 2020 , 26 ( 13 ): 1 - 7 .
何春俐 , 赵建中 . 呼吸道病毒感染预防药物临床试验设计的考虑 [J]. 中国新药杂志 , 2024 , 33 ( 17 ): 1761 - 1766 .
HE C L , ZHAO J Z . Considerations in clinical trial design for preventive drugs for respiratory viral infections [J]. Chin J New Drugs , 2024 , 33 ( 17 ): 1761 - 1766 .
栾哲宇 , 王晗笑 , 彭鑫 , 等 . 基于“正邪”理论探讨病毒性肺炎“免疫-炎症”机制及中医药治疗 [J]. 中国实验方剂学杂志 , 2025 , 31 ( 2 ): 239 - 247 .
LUAN Z Y , WANG H X , PENG X , et al . Exploring the "immune-inflammation" mechanism of viral pneumonia and the treatment of traditional Chinese medicine based on the "righteous and evil" theory [J]. Chin J Exp Tradit Med Form , 2025 , 31 ( 2 ): 239 - 247 .
潘海迪 , 梅笑 , 梁力宬 , 等 . 基于“脾为之卫”理论的中药靶向树突状细胞抗病毒机制研究进展 [J]. 中国免疫学杂志 , 2025 , doi: 22.1126.R.20240919.1608.006 http://dx.doi.org/22.1126.R.20240919.1608.006 .
PAN H D , MEI X , LIANG L C , et al . Research progress on the antiviral mechanism of traditional Chinese medicine targeting dendritic cells based on the "spleen as the defense" theory [J]. Chin J Immunol , 2025 , doi: 22.1126.R.20240919.1608.006 http://dx.doi.org/22.1126.R.20240919.1608.006 .
闵翼 , 张金荣 , 殷智 , 等 . 马鞭草治疗新型冠状病毒肺炎潜在作用机制研究 [J]. 时珍国医国药 , 2022 , 33 ( 10 ): 2532 - 2534 .
MIN Y , ZHANG J R , YIN Z , et al . Study on the potential mechanism of Verbena officinalis in the treatment of novel coronavirus pneumonia [J]. Lishizhen Med Mater Med Res , 2022 , 33 ( 10 ): 2532 - 2534 .
王日成 . UPLC同时测定疏风解毒胶囊中10个化学成分含量 [J]. 中国现代中药 , 2021 , 23 ( 2 ): 358 - 364 .
WANG R C . Simultaneous determination of 10 chemical components in Shufeng Jiedu capsules by UPLC [J]. Chin J Mod Tradit Chin Med , 2021 , 23 ( 2 ): 358 - 364 .
张向丽 , 吕开原 , 张静泽 , 等 . 基于文献探讨马鞭草对新型冠状病毒肺炎的作用机制 [J]. 武警后勤学院学报:医学版 , 2020 , 29 ( 7 ): 68 - 74 .
ZHANG X L , LYU K Y , ZHANG J Z , et al . Exploring the mechanism of Verbena officinalis in treating novel coronavirus pneumonia based on literature [J]. J Logist Acad Armed Police Force:Med Ed , 2020 , 29 ( 7 ): 68 - 74 .
陈本超 . 沉默SOCS1的TIL联合Tim-3单抗重塑非小细胞肺癌免疫微环境的研究 [D]. 昆明 : 昆明医科大学 , 2021 .
CHEN B C . Study on the remodeling of the immune microenvironment of non-small cell lung cancer by silencing SOCS1 in TILs combined with Tim-3 monoclonal antibody [D]. Kunming : Kunming Medical University , 2021 .
刘小可 , 但德苗 , 杜洪桥 , 等 . 5种抗新型冠状病毒化学药物针对不同毒株的细胞水平药效学比较 [J]. 中国临床药学杂志 , 2022 , 31 ( 12 ): 903 - 910 .
LIU X K , DAN D M , DU H Q , et al . Comparison of the cell-level pharmacodynamics of five anti-novel coronavirus chemical drugs against different strains [J]. Chin J Clin Pharmacol , 2022 , 31 ( 12 ): 903 - 910 .
郑劲平 , 薛武军 , 巨春蓉 , 等 . 新型冠状病毒感染脆弱人群的识别及防治展望 [J]. 中国全科医学 , 2024 , 27 ( 2 ): 132 - 137 .
ZHENG J P , XUE W J , JU C R , et al . Identification and prevention of vulnerable populations in novel coronavirus infection:Prospects and outlook [J]. Chin Gen Pract , 2024 , 27 ( 2 ): 132 - 137 .
黄仙娜 , 陈云册 , 周敏 , 等 . 糖尿病患者合并新型冠状病毒感染的研究进展 [J]. 内科理论与实践 , 2024 , 19 ( 1 ): 77 - 81 .
HUANG X N , CHEN Y C , ZHOU M , et al . Research progress on diabetic patients combined with novel coronavirus infection [J]. Intern Med Theory Pract , 2024 , 19 ( 1 ): 77 - 81 .
ST JOHN A , RATHORE A . Early insights into immune responses during COVID-19 [J]. J Immunol , 2020 , 205 ( 3 ): 555 - 564 .
刘昌孝 , 伊秀林 , 崔涛 , 等 . 新型冠状病毒疫苗研发与评价 [J]. 药物评价研究 , 2020 , 43 ( 7 ): 1421 - 1432 .
LIU C X , YI X L , CUI T , et al . Research and evaluation of novel coronavirus vaccines [J]. Drug Eval Res , 2020 , 43 ( 7 ): 1421 - 1432 .
何俊 , 樊瑜琪 , 杨丰文 , 等 . 马鞭草化学成分及药理活性研究进展 [J]. 天津中医药 , 2020 , 37 ( 11 ): 1205 - 1212 .
HE J , FAN Y Q , YANG F W , et al . Research progress on chemical composition and pharmacological activities of Verbena officinalis [J]. Tianjin J Tradit Chin Med , 2020 , 37 ( 11 ): 1205 - 1212 .
陈兴丽 , 孟岩 , 张兰桐 . 马鞭草化学成分和药理作用的研究进展 [J]. 河北医药 , 2010 , 32 ( 15 ): 2089 - 2091 .
CHEN X L , MENG Y , ZHANG L T . Research progress on the chemical composition and pharmacological effects of Verbena officinalis [J]. Hebei Med , 2010 , 32 ( 15 ): 2089 - 2091 .
闵翼 , 张金荣 , 殷智 , 等 . 马鞭草治疗新型冠状病毒肺炎潜在作用机制研究 [J]. 时珍国医国药 , 2022 , 33 ( 10 ): 2532 - 2534 .
MIN Y , ZHANG J R , YIN Z , et al . Study on the potential mechanism of Verbena officinalis in the treatment of novel coronavirus pneumonia [J]. Lishizhen Med Mater Med Res , 2022 , 33 ( 10 ): 2532 - 2534 .
余梅 , 李波 , 葛正行 , 等 . 基于网络药理学及分子对接技术分析马鞭草-虎杖治疗新型冠状病毒感染的作用机制 [J]. 中医临床研究 , 2023 , 15 ( 33 ): 17 - 24 .
YU M , LI B , GE Z X , et al . Network pharmacology and molecular docking analysis of the therapeutic mechanism of Verbena officinalis and Polygonum cuspidatum in treating novel coronavirus infection [J]. Chin Clin Res , 2023 , 15 ( 33 ): 17 - 24 .
新型冠状病毒肺炎诊疗方案(试行第七版) [J]. 传染病信息 , 2020 , 33 ( 1 ): 1 - 6,26 .
Diagnosis and treatment plan for novel coronavirus pneumonia:Trial version 7 [J]. Infect Dis Info , 2020 , 33 ( 1 ): 1 - 6,26 .
熊微 , 冉京燕 , 谢雪佳 , 等 . 治疗新型冠状病毒肺炎中成药的药理作用与临床应用 [J]. 医药导报 , 2020 , 39 ( 4 ): 465 - 476 .
XIONG W , RAN J Y , XIE X J , et al . Pharmacological actions and clinical applications of traditional Chinese medicine in the treatment of novel coronavirus pneumonia [J]. Pharmacol Bull , 2020 , 39 ( 4 ): 465 - 476 .
丁杨 , 胡容 . NLRP3炎症小体激活及调节机制的研究进展 [J]. 药学进展 , 2018 , 42 ( 4 ): 294 - 302 .
DING Y , HU R . Research progress on the activation and regulation mechanisms of the NLRP3 inflammasome [J]. Pharmacol Prog , 2018 , 42 ( 4 ): 294 - 302 .
王文越 , 刘珊 , 吕琴 , 等 . 黄芪-当归药对益气活血药理作用研究进展 [J]. 中国实验方剂学杂志 , 2021 , 27 ( 6 ): 207 - 216 .
WANG W Y , LIU S , LYU Q , et al . Research progress on the pharmacological effects of Astragalus and Angelica in tonifying Qi and promoting blood circulation [J]. Chin J Exp Tradit Med Form , 2021 , 27 ( 6 ): 207 - 216 .
李凤娇 , 顾雯 , 俞捷 , 等 . 线粒体自噬机制、相关疾病及中药对其调节作用的研究进展 [J]. 中国药房 , 2018 , 29 ( 20 ): 2865 - 2871 .
LI F J , GU W , YU J , et al . Mechanisms of mitochondrial autophagy,related diseases,and the regulatory effects of traditional Chinese medicine [J]. Chin Pharm , 2018 , 29 ( 20 ): 2865 - 2871 .
PU Z C , WANG W H , XIE H T , et al . Apolipoprotein C3 (ApoC3) facilitates NLRP3 mediated pyroptosis of macrophages through mitochondrial damage by accelerating of the interaction between SCIMP and SYK pathway in acute lung injury [J]. Int Immunopharmacol , 2024 , 128 : 111537 .
LI L J , MAO R D , YUAN S L , et al . NCF 4 attenuates colorectal cancer progression by modulating inflammasome activation and immune surveillance [J]. Nat Commun , 2024 , 15 ( 1 ): 5170 .
SEKIGUCHI Y , TAKANO S , NOGUCHI T , et al . The NLRP3 inflammasome works as a sensor for detecting hypoactivity of the mitochondrial src family kinases [J]. J Immunol , 2023 , 210 ( 6 ): 795 - 806 .
YANG S M , KA S M , WU H L , et al . Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF- κ B/NLRP3 inflammasome-mediated inflammation,enhancement of NRF2 antioxidant activity and inhibition of apoptosis [J]. Diabetologia , 2014 , 57 ( 2 ): 424 - 434 .
程婧 , 魏林 , 李苗 . 线粒体动力学及线粒体自噬调控机制的研究进展 [J]. 生理学报 , 2020 , 72 ( 4 ): 475 - 487 .
CHENG J , WEI L , LI M . Research progress on mitochondrial dynamics and the regulation mechanisms of mitochondrial autophagy [J]. Acta Physiol Sin , 2020 , 72 ( 4 ): 475 - 487 .
SU I C , SU Y K , SETIAWAN S A et al . NADPH oxidase subunit CYBB confers chemotherapy and ferroptosis resistance in mesenchymal glioblastoma via Nrf2/SOD2 modulation [J]. Int J Mol Sci , 2023 , 24 ( 9 ): 7706 .
ITOH K , CHIBA T , TAKAHASHI S , et al . An Nrf2/small Maf heterodimer mediates the induction of phase Ⅱ detoxifying enzyme genes through antioxidant response elements [J]. Biochem Biophys Res Commun , 1997 , 236 ( 2 ): 313 - 322 .
VERMOT A , PETIT-HÄRTLEIN I , SMITH S M E , et al . NADPH oxidases (NOX):An overview from discovery,molecular mechanisms to physiology and pathology [J]. Antioxidants (Basel) , 2021 , 10 ( 6 ): 890 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
