1.黑龙江中医药大学 中医药研究院,哈尔滨 150040
2.江西中医药大学 现代中药制剂教育部重点 实验室,南昌 330004
3.黑龙江中医药大学 药物安全性评价中心,哈尔滨 150040
4.黑龙江中医药大学 附属第二医院,哈尔滨 150001
郑淇,在读博士,从事中药药性理论及药效物质基础研究,E-mail:648905342@qq.com
卢芳,博士,研究员,博士生导师,从事中药药性理论及药效物质基础研究,E-mail:lufang_1004@163.com
刘树民,博士,教授,博士生导师,从事中药药性理论及药效物质基础研究,E-mail:keji-liu@163.com;
收稿:2024-11-15,
录用:2025-01-03,
网络出版:2025-01-20,
纸质出版:2025-04-20
移动端阅览
郑淇,卢意,于栋华等.基于DIA蛋白质组学探讨刺五加提取物治疗转基因帕金森小鼠的作用机制[J].中国实验方剂学杂志,2025,31(08):40-50.
ZHENG Qi,LU Yi,YU Donghua,et al.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(08):40-50.
郑淇,卢意,于栋华等.基于DIA蛋白质组学探讨刺五加提取物治疗转基因帕金森小鼠的作用机制[J].中国实验方剂学杂志,2025,31(08):40-50. DOI: 10.13422/j.cnki.syfjx.20250108.
ZHENG Qi,LU Yi,YU Donghua,et al.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(08):40-50. DOI: 10.13422/j.cnki.syfjx.20250108.
目的
2
结合数据非依赖型质谱采集(DIA)蛋白质组学技术,探讨刺五加提取物(ASH)治疗帕金森(PD)小鼠的作用机制。
方法
2
使用
α
-突触核蛋白(
α
-Syn)过表达的转基因小鼠构建PD模型,随机分为模型组、刺五加组和美多芭组,另取同月龄雄性C57BL/6小鼠作为空白组,每组各8只。刺五加组给予61.25 mg·kg
-1
的刺五加提取物,美多芭组给予97.5 mg·kg
-1
的美多芭溶液,每日1次,灌胃20 d后,采用爬杆时间和自主活动次数对各组小鼠的运动能力进行评估;苏木素-伊红(HE)染色观察PD小鼠黑质区域神经元的变化情况;免疫组化(IHC)检测黑质区域酪氨酸羟化酶(TH)活性及纹状体区域
α
-Syn面密度;采用DIA定量蛋白质组学技术比较各组小鼠黑质区域的蛋白表达差异;并用IHC验证关键差异蛋白乳铁蛋白(Lactotransferrin)、神经源性位点切口同源物蛋白2(Notch2)、N-Myc下游调节因子2(Ndrg2)、跨膜蛋白166(TMEM 166)表达。用细胞增殖与活性检测试剂盒-8(CCK-8)考察刺五加提取物对
α
-Syn过表达的PD细胞模型活力的影响,并采用实时荧光定量聚合酶链式反应(Real-time PCR)与蛋白免疫印迹法(Western blot)检测
α
-Syn过表达的PD细胞中Lactotransferrin、Notch2、Ndrg2、TMEM 166蛋白及mRNA表达。
结果
2
与空白组比较,模型组小鼠爬杆时间显著延长,协调能力变差,自主活动次数降低(
P
<
0.01),神经元肿胀数量减少;与模型组比较,刺五加和美多芭可以显著缩短小鼠的爬杆时间,
显著增加自主运动次数(
P
<
0.01),改善神经元的损伤。与空白组比较,模型组小鼠黑质区域TH活性显著下降,纹状体区域
α
-Syn堆积增多(
P
<
0.01);与模型组比较,刺五加组TH活性明显增强,
α
-Syn堆积减少(
P
<
0.05)。蛋白质组学分析结果表明,与空白组比较,模型组共筛出464个差异表达蛋白(DEPs),其中323个上调,141个下调;与模型组比较,刺五加组共筛出DEPs 262个,其中85个上调,177个下调。京都基因与基因组百科全书(KEGG)显示刺五加主要调节了Notch信号通路,与空白组比较,模型组Notch2、Ndrg2和TMEM 166的表达上调,Lactotransferrin的表达下调(
P
<
0.01);与模型组比较,刺五加组Notch2、Ndrg2和TMEM 166的表达下调(
P
<
0.05),Lactotransferrin的表达上调(
P
<
0.01),IHC结果与蛋白质组学一致。体外实验结果显示,与空白组比较,模型组细胞Notch2、Ndrg2和TMEM 166 mRNA与蛋白表达水平显著升高(
P
<
0.01),Lactotransferrin mRNA与蛋白表达水平显著降低(
P
<
0.01);与模型组比较,刺五加组细胞Notch2、Ndrg2、TMEM 166 mRNA与蛋白表达水平显著降低(
P
<
0.01),Lactotransferrin mRNA与蛋白表达明显增加(
P
<
0.05,
P
<
0.01)。
结论
2
ASH可能通过下调Notch2、Ndrg2的表达,从而协同阻断Notch信号通路,降低神经元损伤;并通过上调Lactotransferrin,下调TMEM 166的表达,来修复大脑铁积累,干预铁死亡,抑制线粒体自噬,阻止活性氧(ROS)损伤,保护神经细胞达到治疗帕金森的作用。
Objective
2
To investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics.
Methods
2
The
α
-Synuclein (
α
-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg
-1
), and Madopar (97.5 mg·kg
-1
) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemi
stry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of
α
-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells.
Results
2
Compared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (
P
<
0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (
P
<
0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in
α
-Syn accumulation in the striatum (
P
<
0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in
α
-Syn accumulation (
P
<
0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-re
gulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (
P
<
0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (
P
<
0.05) while up-regulating the protein level of Lactotransferrin (
P
<
0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (
P
<
0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (
P
<
0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (
P
<
0.01), while increasing the mRNA and protein levels of Lactotransferrin (
P
<
0.05,
P
<
0.01).
Conclusion
2
ASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
TOLOSA E , GARRIDO A , SCHOLZ S W , et al . Challenges in the diagnosis of Parkinson's disease [J]. Lancet Neurol , 2021 , 20 ( 5 ): 385 - 397 .
DONG-CHEN X , YONG C , YANG X , et al . Signaling pathways in Parkinson's disease:Molecular mechanisms and therapeutic interventions [J]. Signal Transduct Target Ther , 2023 , 8 ( 1 ): 73 .
LOTANKAR S , PRABHAVALKAR K S , BHATT L K . Biomarkers for Parkinson's disease:Recent advancement [J]. Neurosci Bull , 2017 , 33 ( 5 ): 585 - 597 .
INAGAKI F , MOMOSE M , MARUYAMA N , et al . Activation of disulfide bond cleavage triggered by hydrophobization and lipophilization of functionalized dihydroasparagusic acid [J]. Org Biomol Chem , 2018 , 16 ( 23 ): 4320 - 4324 .
DIONíSIO P A , AMARAL J D , RODRIGUES C . Oxidative stress and regulated cell death in Parkinson's disease [J]. Ageing Res Rev , 2021 , 67 : 101263 .
CHAKRABARTI S , BISAGLIA M . Oxidative stress and neuroinflammation in Parkinson's disease:The role of dopamine oxidation products [J]. Antioxidants (Basel) , 2023 , 12 ( 4 ): 955 .
ZHU M , LIU X , YE Y , et al . Gut microbiota:A novel therapeutic target for Parkinson's disease [J]. Front Immunol , 2022 , 13 : 937555 .
JIA A , ZHANG Y , GAO H , et al . A review of Acanthopanax senticosus (Rupr and Maxim.) harms:From ethnopharmacological use to modern application [J]. J Ethnopharmacol , 2021 , 268 : 113586 .
HUANG Y H , LI J T , ZAN K , et al . The traditional uses, secondary metabolites, and pharmacology of Eleutherococcus species [J]. Phytochem Rev , 2022 , 21 : 1081 - 1184 .
FU J , GAO X , LU Y , et al . Integrated proteomics and metabolomics reveals metabolism disorders in the α-Syn mice and potential therapeutic effect of Acanthopanax senticosus extracts [J]. J Ethnopharmacol , 2024 , 318 ( Pt A ): 116878 .
卢芳 , 刘树民 . 刺五加有效部位对MPP + 损伤PC12细胞的保护作用 [J]. 中华中医药学刊 , 2015 , 33 ( 4 ): 831 - 834 .
LU F , LIU S M . The protective effect of effective part of acanthopanacis senticosus harms on the damage of PC12 cells induced by MPP [J]. Chin Archives Tradit Chin Med , 2015 , 33 ( 4 ): 831 - 834 .
LI X Z , ZHANG S N , WANG K X , et al . iTRAQ-based quantitative proteomics study on the neuroprotective effects of extract of Acanthopanax senticosus harm on SH-SY5Y cells overexpressing A53T mutant α -Synuclein [J]. Neurochem Int , 2014 , 72 : 37 - 47 .
LIU S M , LI X Z , ZHANG S N , et al . Acanthopanax senticosus protects structure and function of mesencephalic mitochondria in a mouse model of Parkinson's disease [J]. Chin J Integr Med , 2018 , 24 ( 11 ): 835 - 843 .
张帅男 , 李煦照 , 卢芳 , 等 . 刺五加干预高表达野生型 α -突触核蛋白的SH-SY5Y细胞的蛋白质组学研究 [J]. 中华中医药杂志 , 2016 , 31 ( 7 ): 2538 - 2542 .
ZHANG S N , LI X Z , LU F , et al . Proteomics study on SH-SY5Y cells over expressing wild-type α -Synuclein treated with Acanthopanax senticosus Harms [J]. China J Tradit Chin Med Pharm , 2016 , 31 ( 7 ), 2538 - 2542 .
LI X Z , ZHANG S N , LU F , et al . Microarray expression analysis for the paradoxical roles of Acanthopanax senticosus harms in treating α -Synucleinopathies [J]. Phytother Res , 2016 , 30 ( 2 ): 243 - 252 .
LU Y , GAO X , NAN Y , et al . Acanthopanax senticosus Harms improves Parkinson's disease by regulating gut microbial structure and metabolic disorders [J]. Heliyon , 2023 , 9 ( 7 ): e18045 .
张丰荣 , 张颖 , 杨济丞 , 等 . 蛋白质组学在中医药防治心肌梗死后心力衰竭疾病研究中的应用进展 [J]. 中国中药杂志 , 2024 , 49 ( 22 ): 6008 - 6018 .
ZHANG F R , ZHANG Y , YANG J C , et al . Proteomics in prevention and treatment of post-myocardial infarction heart failure diseases with traditional Chinese medicine [J]. China J Chin Mater Medica , 2024 , 49 ( 22 ): 6008 - 6018 .
CHRISTIANS U , KLAWITTER J , KLAWITTER J . Biomarkers in transplantation-proteomics and metabolomics [J]. Ther Drug Monit , 2016 , 38 ( Suppl 1 ): S70 - S74 .
ZHANG S N , LI X Z , LU F , et al . Cerebral potential biomarkers discovery and metabolic pathways analysis of α -Synucleinopathies and the dual effects of Acanthopanax senticosus Harms on central nervous system through metabolomics analysis [J]. J Ethnopharmacol , 2015 , 163 : 264 - 272 .
万钰铃 , 陈彦君 , 陈静文 , 等 . 帕宁Ⅰ号方对帕金森病小鼠多巴胺能神经元氧化应激介导的铁死亡途径的影响 [J]. 上海中医药杂志 , 2024 , 58 ( 9 ): 80 - 90 .
WAN Y L , CHEN Y J , CHEN J W , et al . Effects of Paning Ⅰ formula on oxidative stress-mediated ferroptosis pathway in dopaminergic neurons of PD mice [J]. Shanghai J Tradit Chin Med , 2024 , 58 ( 9 ): 80 - 90 .
HAYES M T . Parkinson's disease and parkinsonism [J]. Am J Med , 2019 , 132 ( 7 ): 802 - 807 .
鲍倩 , 赵亚伟 , 霍晓晓 , 等 . 中医药治疗帕金森病非运动症状研究进展 [J]. 现代中西医结合杂志 , 2019 , 28 ( 35 ): 3986 - 3990 .
BAO Q , ZHAO Y W , HUO X X , et al . Study progression of the treatment for Parkinson's non-motor symptoms with traditional Chinese medicine [J]. Modern J Integr Tradit Chin Western Med , 2019 , 28 ( 35 ): 3986 - 3990 .
高鑫 , 刘京京 , 吴娟 , 等 . 拜颤停复方对帕金森病转基因模型小鼠脑内多巴胺及病理变化的作用研究 [J]. 中药药理与临床 , 2020 , 36 ( 4 ): 159 - 162 .
GAO X , LIU J J , WU J , et al . Effects of Baichanting compound on dopamine and pathological changes in the brain of transgenic model rats with Parkinson's disease [J]. Pharmacol Clin Chin Mater Med , 2020 , 36 ( 4 ): 159 - 162 .
NAGATSU T , NAKASHIMA A , WATANABE H , et al . Neuromelanin in Parkinson's disease:Tyrosine hydroxylase and tyrosinase [J]. Int J Mol Sci , 2022 , 23 ( 8 ): 4176 .
ZHANG X B , XU S Q , HUI Y G , et al . Lactotransferrin promotes intervertebral disc degeneration by regulating Fas and inhibiting human nucleus pulposus cell apoptosis [J]. Aging (Albany NY) , 2022 , 14 ( 10 ): 4572 - 4585 .
XU S F , ZHANG Y H , WANG S , et al . Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice [J]. Redox Biol , 2019 , 21 : 101090 .
BOLAT E , EKER F , KAPLAN M , et al . Lactoferrin for COVID-19 prevention, treatment, and recovery [J]. Front Nutr , 2022 , 9 : 992733 .
WANG S , ZHANG N , JIANG B , et al . Molecular characterization and expression of lactoferrin receptor (lfr) in different regions of the brain responding to lactoferrin intervention [J]. Mol Neurobiol , 2025 , 62 ( 3 ): 2857 - 2871 .
YANG Y , ZHOU L , XUE F , et al . Transmembrane protein 166 and its significance [J]. Protein Pept Lett , 2021 , 28 ( 4 ): 382 - 387 .
OU K , LI Y , LIU L , et al . Recent developments of neuroprotective agents for degenerative retinal disorders [J]. Neural Regen Res , 2022 , 17 ( 9 ): 1919 - 1928 .
LIAO Z , GONG Z , WANG Z , et al . The degradation of TMEM166 by autophagy promotes AMPK activation to protect SH-SY5Y cells exposed to MPP [J]. Cells , 2022 , 11 ( 17 ): 2706 .
NORAT P , SOLDOZY S , SOKOLOWSKI J D , et al . Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation [J]. NPJ Regen Med , 2020 , 5 ( 1 ): 22 .
TAYLOR M , ALESSI D R . Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson's disease [J]. Curr Opin Cell Biol , 2020 , 63 : 102 - 113 .
XIU M X , LIU Y M . The role of oncogenic Notch2 signaling in cancer: A novel therapeutic target [J]. Am J Cancer Res , 2019 , 9 ( 5 ): 837 - 854 .
DONG M X , FENG X , XU X M , et al . Integrated analysis reveals altered lipid and glucose metabolism and identifies NOTCH2 as a biomarker for Parkinson's disease related depression [J]. Front Mol Neurosci , 2018 , 11 : 257 .
WANG X , GU X , WANG C , et al . Loss of Ndrg2 function is involved in notch activation in neuromast hair cell regeneration in zebrafish [J]. Mol Neurobiol , 2023 , 60 ( 6 ): 3100 - 3112 .
0
浏览量
253
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
