1.湖南中医药大学 药学院,长沙 410208
2.湘产大宗道地药材种质资源及规范化种植重点研究室,长沙 410208
3.湖南省普通高等学校中药现代化研究重点实验室,长沙 410208
4.湖南省中药饮片标准化及功能工程技术研究中心,长沙 410208
何佳蔚,在读硕士,从事中药资源与质量研究,Tel:0731-88458233,E-mail:453876501@qq.com
周日宝,博士,教授,从事中药资源与质量研究,Tel:0731-88458233,E-mail:1057323510@126.com
刘湘丹,博士,教授,从事中药资源与质量研究,Tel:0731-88458233,E-mail:paeonia@hnucm.edu.cn;
收稿:2024-10-28,
录用:2025-01-21,
网络出版:2025-02-11,
纸质出版:2025-04-20
移动端阅览
何佳蔚,张惊宇,曾娟等.转录组和代谢组联合分析挖掘灰毡毛忍冬苯丙素类物质生物合成途径关键基因[J].中国实验方剂学杂志,2025,31(08):167-175.
HE Jiawei,ZHANG Jingyu,ZENG Juan,et al.Key Genes in Phenylpropanoid Biosynthesis Pathway of Lonicera macranthoides Based on Transcriptome and Metabolome Conjoint Analysis[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(08):167-175.
何佳蔚,张惊宇,曾娟等.转录组和代谢组联合分析挖掘灰毡毛忍冬苯丙素类物质生物合成途径关键基因[J].中国实验方剂学杂志,2025,31(08):167-175. DOI: 10.13422/j.cnki.syfjx.20250216.
HE Jiawei,ZHANG Jingyu,ZENG Juan,et al.Key Genes in Phenylpropanoid Biosynthesis Pathway of Lonicera macranthoides Based on Transcriptome and Metabolome Conjoint Analysis[J].Chinese Journal of Experimental Traditional Medical Formulae,2025,31(08):167-175. DOI: 10.13422/j.cnki.syfjx.20250216.
目的
2
基于转录组和代谢组联合分析挖掘灰毡毛忍冬中苯丙素类化合物生物合成途径关键基因,为进一步探究湘蕾型灰毡毛忍冬中苯丙素类化合物的合成调控机制提供基础。
方法
2
选取湘蕾型灰毡毛忍冬茎、叶和3个花期花作为实验材料构建转录组和代谢组,通过京都基因与基因组百科全书(KEGG)数据库、加权共表达网络分析(WGCNA)对转录组和代谢组进行联合分析,挖掘灰毡毛忍冬苯丙素类物质生物合成途径关键基因。
结果
2
该研究发现7
7个差异苯丙素类化合物和315个差异基因,通过转录代谢联合分析,最终挖掘出9个关键的差异代谢物和4个与其相关的关键基因,其中肉桂酸、5-
O
-咖啡酰莽草酸、芥子醇和绿原酸在花中较高,其中标志性有效成分绿原酸在枯萎期中含量急剧下降,咖啡酸、阿魏酸、5-羟基松柏醛、对羟基肉桂醇和紫丁香苷在叶中含量较高,这4个关键基因分别属于肉桂醇脱氢酶(CAD)家族、4-香豆酸:辅酶A(4CL)家族、羟基肉桂酰基转移酶(HCT)家族和
L
-苯丙氨酸解氨酶(PAL)家族基因。
结论
2
灰毡毛忍冬中挖掘出的4个关键基因中
TRINITY
_
DN42767
_
c0
_
g6
与对羟基肉桂醇、芥子醇的合成相关,
TRINITY
_
DN43525
_
c4
_
g1
以咖啡酸、阿魏酸、肉桂酸为底物催化下一步反应,
TRINITY
_
DN47958
_
c3
_
g4
与3-对香豆酰基奎宁酸和咖啡酰辅酶A的合成相关,
TRINITY
_
DN52595
_
c1
_
g2
与肉桂酸的合成相关。该发现为进一步探究湘蕾型灰毡毛忍冬中苯丙素类化合物的合成调控机制提供基础。
Objective
2
Based on the conjoint analysis of transcriptome and metabolome, the key genes in the phenylpropanoid biosynthesis pathway of
Lonicera macranthoides
were explored, which provided a basis for further exploring the synthesis and regulation mechanism of phenylpropanoid compounds in "Xianglei"
L. macranthoides
.
Methods
2
The stem, leaves, and three flowering flowers of "Xianglei"
L. macranthoides
were selected as experimental materials to construct transcriptome and metabolome. The transcriptome and metabolomics were conjointly analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and weighted correlation network analysis (WGCNA), and the key genes in the phenylpropanoid biosynthesis pathway of
L. macranthoides
were explored.
Results
2
In this study, 77 differential phenylpropanoids and 315 differential genes were found. Through the joint analysis of transcription and metabolism, nine key differential metabolites and four key genes related to them were finally discovered. Among them, cinnamic acid, 5-
O
-caffeoylshikimic acid,sinapyl alcohol, and chlorogenic acid were higher in flowers, and the content of the iconic effective component, namely chlorogenic acid,decreased sharply during the withering period. Caffeic acid,ferulic acid, 5-hydroxyconiferaldehyde,p-coumaryl alcohol, and syringin were higher in leaves. These four key genes belong to the cinnamic alcohol dehydrogenase (CAD) family, 4-coumaric acid: Coenzyme A (4CL) family, hydroxycinnamyl transferase (HCT) family, and
L
-phenylalanine ammonlyase (PAL) family genes.
Conclusion
2
Among the four key genes excavated from
L. macranthoides
,
TRINITY
_
DN42767
_
c0
_
g6
is related to the synthesis of p-coumaryl alcohol and sinapyl alcohol.
TRINITY
_
DN43525
_
c4
_
g1
uses caffeic acid,ferulic acid,and cinnamic acid as substrates to catalyze the next reaction.
TRINITY
_
DN47958
_
c3
_
g4
correlates with the synthesis of 3-p-coumaroyl quinic acid and caffeoyl-CoA, and
TRINITY
_
DN52595
_
c1
_
g2
correlates with cinnamic acid synthesis. These findings provide a basis for further exploring the synthesis and regulation mechanism of phenylpropanoids in "Xianglei"
L. macranthoides
.
国家药典委员会 . 中华人民共和国药典:一部 [M]. 北京 : 中国医药科技出版社 , 2020 .
National Pharmacopoeia Committee . Pharmacopoeia of the People's Republic of China:A [M]. Beijing : China Medical Science and Technology Press , 2020 .
汤嫣然 , 曾婷 , ZAFAR S , 等 . 山银花化学成分与其生物活性的研究进展 [J]. 数字中医 , 2018 , 1 ( 2 ): 173 - 188 .
TANG Y R , ZENG T , ZAFAR S , et al . Lonicerae Flos:A review of chemical constituents and biological activities [J]. Digital Chin Med , 2018 , 1 ( 2 ): 173 - 188 .
YANG B Y , LIU Y , JIANG H B , et al . Phenylpropanoids from the fruits of Nicandra physaloides and their anti-inflammatory activities [J]. Nat Prod Res , 2017 , 31 ( 22 ): 2634 - 2640 .
韦晶玥 , 罗诗雯 , 冯龄燃 , 等 . 金银花与山银花活性成分抗炎作用及机制研究进展 [J]. 中国实验方剂学杂志 , 2024 , 30 ( 11 ): 273 - 281 .
WEI J Y , LUO S W , FENG L R , et al . Anti-inflammatory effect and mechanism of active constituents from Lonicerae Japonicae Flos and Lonicerae Flos:A review [J]. Chin J Exp Tradit Med Form , 2024 , 30 ( 11 ): 273 - 281 .
KINCSES A , GHAZAL T , HOHMANN J . Synergistic effect of phenylpropanoids and flavonoids with antibiotics against Gram-positive and Gram-negative bacterial strains [J]. Pharm Biol , 2024 , 62 ( 1 ): 659 - 665 .
WU S T , WANG Y X , YU B H , et al . Phenylpropanoids from Brachybotrys paridiformis Maxim. ex Oliv. and their anti-HBV activities [J]. Phytochemistry , 2022 , 197 : 113 - 114 .
ZHANG S , HUANG Y , LI Y , et al . Anti-neuroinflammatory and antioxidant phenylpropanoids from Chinese olive [J]. Food Chem , 2019 , 286 : 421 - 427 .
ITO C , ITOIGAWA M , FURUKAWA H , et al . Anti-tumor-promoting effects of phenylpropanoids on epstein-barr virus activation and two-stage mouse skin carcinogenesis [J]. Cancer Lett , 1999 , 142 ( 1 ): 49 - 54 .
YANG G , QIN Y , JIA Y , et al . Transcriptomic and metabolomic data reveal key genes that are involved in the phenylpropanoid pathway and regulate the floral fragrance of rhododendron fortunei [J]. BMC Plant Biol , 2023 , 23 ( 1 ): 8 .
张惊宇 , 龙雨青 , 曾娟 , 等 . 基于代谢组学及转录组学研究灰毡毛忍冬不同品种黄酮类成分差异积累的转录调控机制 [J]. 中国中药杂志 , 2024 , 49 ( 10 ): 2666 - 2679 .
ZHANG J Y , LONG Y Q , ZENG J , et al . Transcriptional regulation mechanism of differential accumulation of flavonoids in different varieties of Lonicera macranthoides based on metabonomics and transcriptomics [J]. China J Chin Mater Med , 2024 , 49 ( 10 ): 2666 - 2679 .
田孟尧 , 罗珂珂 , 王梦晓 , 等 . 茯苓运化颗粒治疗2型糖尿病大鼠的非靶向代谢组学分析 [J]. 中国实验方剂学杂志 , 2024 , 30 ( 23 ): 195 - 204 .
TIAN M R , LUO K K , WANG M X , et al . Non-targeted metabolomics analysis of Fuling Yunhua granules in treatment of type 2 diabetes mellitus rats [J]. Chin J Exp Tradit Med Form , 2024 , 30 ( 23 ): 195 - 204 .
吉姣姣 , 戴俊利 , 李建宽 , 等 . 党参不同组织化学成分分布及转录组学分析 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 18 ): 117 - 125 .
JI J J , DAI J L , LI J K , et al . Chemical components distribution and transcriptome analysis of different tissues from Codonopsis pilosula [J]. Chin J Exp Tradit Med Form , 2023 , 29 ( 18 ): 117 - 125 .
陶鹏 , 刘应 , 唐子惟 , 等 . 基于转录组的黄精多糖代谢关键酶基因的筛选与验证 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 12 ): 157 - 167 .
TAO P , LIU Y , TANG Z W , et al . Transcriptome-based screening and validation of key enzyme genes for Polygonatum polysaccharide metabolism [J]. Chin J Exp Tradit Med Form , 2023 , 29 ( 12 ): 157 - 167 .
HIRANO K , AYA K , KONDO M , et al . OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm [J]. Plant Cell Rep , 2012 , 31 ( 1 ): 91 - 101 .
BUKH C , NORD-LARSEN P H , RASMUSSEN S K . Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon [J]. J Exp Bot , 2012 , 63 ( 17 ): 6223 - 6236 .
LI Y , WANG R , PEI Y , et al . Phylogeny and functional characterization of the cinnamyl alcohol dehydrogenase gene family in Phryma leptostachya [J]. Int J Biol Macromol , 2022 , 217 : 407 - 416 .
WU M , LI Y , LIU Z , et al . Genome-wide identification of the CAD gene family and functional analysis of putative bona fide CAD genes in tobacco ( Nicotiana tabacum L.) [J]. Front Plant Sci , 2024 , 15 : 1400213 .
LIU T , YAO R , ZHAO Y , et al . Cloning,functional characterization and site-directed mutagenesis of 4-coumarate:Coenzyme a ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn [J]. Front Plant Sci , 2017 , 8 : 4 .
SUN H , LI Y , FENG S , et al . Analysis of five rice 4-coumarate:Coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice [J]. Biochem Biophys Res Commun , 2013 , 430 ( 3 ): 1151 - 1156 .
WANG C H , YU J , CAI Y X , et al . Characterization and functional analysis of 4-coumarate:CoA ligase genes in mul-berry [J]. PLoS One , 2016 , 11 ( 5 ): e0155814 .
LI M , GUO L , WANG Y , et al . Molecular and biochemical characterization of two 4-coumarate:CoA ligase genes in tea plant ( Camellia sinensis ) [J]. Plant Mol Biol , 2022 , 109 ( 4/5 ): 579 - 593 .
CHAO N , QI Q , LI S , et al . Characterization and functional analysis of the hydroxycinnamoyl-CoA:Shikimate hydroxycinnamoyl transferase (HCT) gene family in poplar [J]. PeerJ , 2021 , 9 : e10741 .
KIM B G , KIM I A , AHN J H . Characterization of hydroxycinnamoyl-coenzyme a shikimate hydroxycinnamoyltransferase from Populus euramericana [J]. J Korean Soc Appl Biolog Chem , 2011 , 54 ( 5 ): 817 - 821 .
EUDES A , PEREIRA J H , YOGISWARA S , et al . Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA:Shikimate hydroxycinnamoyl transferase to reduce lignin [J]. Plant Cell Physiol , 2016 , 57 ( 3 ): 568 - 579 .
HOFFMANN L , MAURY S , MARTZ F , et al . Purification,cloning,and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism [J]. J Biol Chem , 2003 , 278 ( 1 ): 95 - 103 .
DE JONG F , HANLEY S J , BEALE M H , et al . Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar [J]. Phytochemistry , 2015 , 117 : 90 - 97 .
0
浏览量
149
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
