浏览全部资源
扫码关注微信
1.广州中医药大学,广州 510405
2.广州正骨医院,广州 510030
3.广州中医药大学 第一附属医院,广州 510405
麦嘉乐,在读硕士,从事骨与关节疾病的防治研究,E-mail:smumaijiale@163.com
王海彬,主任中医师,博士生导师,从事骨与关节疾病的防治研究,E-mail:hipknee@163.com
纸质出版日期:2022-06-20,
网络出版日期:2022-03-01,
收稿日期:2021-12-02,
扫 描 看 全 文
麦嘉乐,李建良,肖嘉聪等.基于网络药理学探析黄精抗骨质疏松的机制及验证[J].中国实验方剂学杂志,2022,28(12):210-217.
MAI Jia-le,LI Jian-liang,XIAO Jia-cong,et al.Mechanism of Polygonati Rhizoma on Treating Osteoporosis Based on Network Pharmacology and Preliminary Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(12):210-217.
麦嘉乐,李建良,肖嘉聪等.基于网络药理学探析黄精抗骨质疏松的机制及验证[J].中国实验方剂学杂志,2022,28(12):210-217. DOI: 10.13422/j.cnki.syfjx.20220519.
MAI Jia-le,LI Jian-liang,XIAO Jia-cong,et al.Mechanism of Polygonati Rhizoma on Treating Osteoporosis Based on Network Pharmacology and Preliminary Verification[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(12):210-217. DOI: 10.13422/j.cnki.syfjx.20220519.
目的
2
基于网络药理学及分子对接方法分析黄精抗骨质疏松(OP)的潜在机制,并通过实验进行验证。
方法
2
利用中药系统药理学数据库(TCMSP)2.3进行条件检索,获取黄精的活性成分及其对应作用靶点,并在疾病相关的基因与突变位点数据库(DisGeNET)7.0获取骨质疏松的治疗靶标,两者交集即为黄精抗骨质疏松的潜在靶基因。并用Cytoscape 3.7.1构建“黄精-活性成分-潜在靶点”网络,借助STRING数据库11.0进行蛋白质-蛋白质相互作用(PPI)分析,构建PPI网络。此外,采用Metascape数据库3.5分析其参与的基因本体(GO)富集分析及京都基因与基因组百科全书(KEGG)富集分析。选取黄精重要活性成分与靶点通过AutoDock Vina 1.1.2 进行分子对接验证,最后借助小鼠胚胎成骨细胞前体细胞(MC3T3-E1)观察
β
-谷甾醇对成骨分化的影响。
结果
2
黄精活性成分有12个,其作用靶点与骨质疏松治疗靶点相映射得到潜在靶点32个。Cytoscape 3.7.1拓扑分析得到黄芩素、
β
-谷甾醇等6个主要成分,蛋白激酶B1(Akt1)、肿瘤蛋白p53(TP53)、血管内皮生长因子A(VEGFA)、JUN原癌基因(JUN)、基质金属蛋白酶-9(MMP-9)、原癌基因c-FOS(FOS)等关键靶点。GO和KEGG富集分析中,共获得995个GO条目,涉及活性氧调节,生长调节等181条信号通路。分子对接显示黄精中核心成分与各自的靶点表现出良好的对接活性。细胞实验结果显示
β
-谷甾醇在2.5,5 μmol·L
-1
浓度时具有显著促进成骨分化的作用。
结论
2
黄精可通过调节炎症、氧化应激、凋亡、代谢等作用,发挥治疗骨质疏松的效果,其中
β
-谷甾醇可促进MC3T3-E1细胞成骨分化。
Objective
2
To explore the potential mechanism of Polygonati Rhizoma on the treatment of osteoporosis (OP) based on network pharmacology and molecular docking method and to verify the mechanism by experiments.
Method
2
The main active ingredients and corresponding targets of Polygonati Rhizoma were screened out from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) 2.3 by conditional searching. The treatment targets were obtained from the genes related to OP and DisGeNET 7.0. The potential target genes of Polygonati Rhizoma for treating OP were obtained by the crossing of the corresponding targets and the treatment targets. Cytoscape 3.7.1 was used to construct the “Polygonati Rhizoma-active ingredient-potential target” network. The protein-protein interaction (PPI) analysis was carried out by STRING 11.0, and the PPI network was constructed. Metascape 3.5 was used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the key targets. The core ingredients and key targets of Polygonati Rhizoma were selected for molecular docking by AutoDock Vina 1.1.2. Finally, the effect of
β
-sitosterol on osteogenic differentiation of MC3T3-E1 cells in rats was observed.
Result
2
Twelve active ingredients and 32 potential targets of Polygonati Rhizoma for OP treatment were screened out. Six active ingredients including baicalein and
β
-sitosterol and key targets including protein kinase 1 (Akt1), tumor suppressor p53 (TP53), vascular endothelial growth factorA (VEGFA), proto-oncogene Jun (JUN), matrix metalloproteinase-9 (MMP-9), and proto-oncogene c-Fos (FOS) were obtained by Cytoscape 3.7.1 topological analysis. A total of 995 GO entries and 181 signaling pathways involving the response to reactive oxygen species and regulations of growth were obtained from GO and KEGG enrichment analyses. The results of molecular docking showed that the core active ingredients possessed good binding activities with the respective key targets. The results of cell experiments showed that
β
-sitosterol promoted the osteogenic differentiation at the concentration of 2.5 μmol·L
-1
and 5 μmol·L
-1
.
Conclusion
2
Polygonati Rhizoma had the therapeutic effect on treating OP by regulating inflammation, oxidative stress, apoptosis, and metabolism. The
β
-sitosterol significantly promoted the osteogenic differentiation of MC3T3-E1 cells.
黄精骨质疏松网络药理学分子对接机制
Polygonati Rhizomaosteoporosisnetwork pharmacologymolecular dockingmechanism
夏维波,章振林,林华,等.原发性骨质疏松症诊疗指南(2017)[J]. 中国骨质疏松杂志,2019,25(3):281-309.
MILLER P D.Management of severe osteoporosis[J].Expert Opin Pharmacother,2016,17(4):473-488.
CLYNES M A,HARVEY N C,CURTIS E M,et al.The epidemiology of osteoporosis[J].Br Med Bull,2020,133(1):105-117.
中华医学会骨质疏松和骨矿盐疾病分会.中国骨质疏松症流行病学调查及"健康骨骼"专项行动结果发布[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):317-318.
国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科技出版社,2020:319-320.
陈宇,周芸湄,李丹,等.黄精的现代药理作用研究进展[J].中药材,2021(1):240-244.
方欢乐,李瑶瑶,陈晶晶,等.黄精多糖通过调节JAK2/STAT3通路改善异丙肾上腺素诱导的大鼠心肌肥厚[J].实用药物与临床,2019,22(4):354-358.
张娇,王元忠,杨维泽,等.黄精属植物化学成分及药理活性研究进展[J].中国中药杂志,2019,44(10):1989-2008.
杨兴鑫,王曦,董金材,等.滇黄精对非酒精性脂肪肝大鼠的保护作用及机制研究[J].中国药学杂志,2018,53(12):975-981.
彭静.黄精皂苷对糖尿病肾病大鼠肾损伤的保护作用及Wnt/β-catenin信号通路的影响[J].中成药,2019,41(10):2518-2521.
任洪民,邓亚羚,张金莲,等.药用黄精炮制的历史沿革、化学成分及药理作用研究进展[J].中国中药杂志,2020,45(17):4163-4182.
唐伟,王威,谭丽阳,等.黄精多糖对慢性脑缺血大鼠学习记忆能力及脑组织超微结构影响[J].中国中医药科技,2017,24(2):173-176.
陆连第,段伟松,赵玉,等.黄精多糖对血管性痴呆模型大鼠干预作用的实验研究[J].中药材,2018,41(9):2212-2215.
赵宏丽,许燕,赵红岩,等.黄精多糖对2型糖尿病大鼠SREBP-1c和SCD-1蛋白表达的影响[J].中药药理与临床,2015,31(1):106-109.
ZONG S,ZENG G,ZOU B,et al.Effects of Polygonatum sibiricum polysaccharide on the osteogenic differentiation of bone mesenchymal stem cells in mice[J].Int J Clin Exp Pathol,2015,8(6):6169-6180.
ZENG G F,ZHANG Z Y,LU L,et al.Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy-induced bone loss in rats[J].J Ethnopharmacol,2011,136(1):224-229.
PENG X,HE J,ZHAO J,et al.Polygonatum sibiricum polysaccharide promotes osteoblastic differentiation through the ERK/GSK-3β/β-catenin signaling pathway in vitro[J].Rejuvenation Res,2018,21(1):44-52.
DU L,NONG M N,ZHAO J M,et al.Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway[J].Sci Rep,2016,6:32261.
LI B,WU P,FU W,et al.The Role and Mechanism of miRNA-1224 in the Polygonatum sibiricum polysaccharide regulation of bone marrow-derived macrophages to osteoclast differentiation[J].Rejuvenation Res,2019,22(5):420-430.
HOPKINS A L.Network pharmacology[J].Nat Biotechnol,2007,25(10):1110-1111.
XU J,LIU X,LUO L,et al.A metabonomics investigation into the therapeutic effects of BuChang NaoXinTong capsules on reversing the amino acid-protein interaction network of cerebral ischemia[J].Oxid Med Cell Longev,2019,2019:7258624.
ZHONG X,XIU L L,WEI G H,et al.Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation[J].Acta Pharmacol Sin,2011,32(5):591-600.
WANG P,WANG M,ZHUO T,et al.Hydroxysafflor yellow A promotes osteogenesis and bone development via epigenetically regulating β-catenin and prevents ovariectomy-induced bone loss[J].Int J Biochem Cell Biol,2021,137:106033.
BONE H.Future directions in osteoporosis therapeutics[J].Endocrinol Metab Clin North Am,2012,41(3):655-661.
KOMM B S,MORGENSTERN D,A YAMAMOTO L ,et al.The safety and tolerability profile of therapies for the prevention and treatment of osteoporosis in postmenopausal women[J].Expert Rev Clin Pharmacol,2015,8(6):769-784.
ZHANG Z,CHEN Y,XIANG L,et al.Diosgenin protects against alveolar bone loss in ovariectomized rats via regulating long non-coding RNAs[J].Exp Ther Med,2018,16(5):3939-3950.
UCHINO K,OKAMOTO K,SAKAI E,et al.Dual effects of liquiritigenin on the proliferation of bone cells: Promotion of osteoblast differentiation and inhibition of osteoclast differentiation[J].Phytother Res,2015,29(11):1714-1721.
BIN SAYEED M,KARIM S,SHARMIN T,et al. Critical analysis on characterization,systemic effect,and therapeutic potential of beta-sitosterol: A plant-derived orphan phytosterol[J].Medicines (Basel),2016,3(4):29.
HERS I,VINCENT E E,TAVARÉ J M.Akt signalling in health and disease[J].Cell Signal,2011,23(10):1515-1527.
MUKHERJEE A,ROTWEIN P.Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development[J].Mol Cell Biol,2012,32(2):490-500.
WANG Z,GE X,WANG Y,et al.Mechanism of dexmedetomidine regulating osteogenesis-angiogenesis coupling through the miR-361-5p/VEGFA axis in postmenopausal osteoporosis[J].Life Sci,2021,275:119273.
ZHAO J J,WU Z F,YU Y H,et al.Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway[J].J Cell Physiol,2018,233(9):7182-7194.
KIM Y,KIM J,LEE H,et al.Tetracycline analogs inhibit osteoclast differentiation by suppressing MMP-9-mediated histone H3 cleavage[J].Int J Mol Sci,2019,20(16):4038.
WU M P,ZHANG Y S,ZHOU Q M,et al.Higenamine protects ischemia/reperfusion induced cardiac injury and myocyte apoptosis through activation of β2-AR/PI3K/Akt signaling pathway[J].Pharmacol Res,2016,104:115-123.
SIDDIQUI W A,AHAD A,AHSAN H.The mystery of Bcl-2 family: Bcl-2 proteins and apoptosis:An update[J].Arch Toxicol,2015,89(3):289-317.
0
浏览量
13
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构